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Noisy Evolutionary Optimization Algorithms-A 

Comprehensive Survey 
Pratyusha Rakshit, Amit Konar and Swagatam Das 

Abstract— Noisy optimization is currently receiving increasing popularity for its widespread applications in engineering optimization 

problems, where the objective functions are often found to be contaminated with noisy sensory measurements. In absence of knowledge of the 

noise-statistics, discriminating better trial solutions from the rest becomes difficult in the “selection” step of an evolutionary optimization 

algorithm with noisy objective/s. This paper provides a thorough survey of the present state-of-the-art research on noisy evolutionary algorithms 

for both single and multi-objective optimization problems. This is undertaken by incorporating one or more of the five strategies in traditional 

evolutionary algorithms. The strategies include i) fitness sampling of individual trial solution, ii) fitness estimation of noisy samples, iii) 

dynamic population sizing over the generations, iv) adaptation of the evolutionary search strategy, and v) modification in the selection strategy.  

Keywords— Evolutionary Optimization; Noise; Uncertainty; Sampling; Population Sizing; Fitness Estimation; Selection.  

I. INTRODUCTION  

Real world problems involving system design, control, planning, and scheduling are often formulated in the settings of an 

optimization problem with an aim to maximize system throughput/efficiency under the constraints on system resources. Typically, 

a physical process is characterized by a set of measurements and a set of estimators with a mathematical relationship between the 

measurements and the estimators. For example, in coordinated problem solving, such as box-pushing by twin robots [154], the 

range data obtained by the robots at any instance of time are the measurements, and the force and/or torque to be developed by the 

robot for a pre-determined movement of the box are the estimators. The objective functions, here, are energy and time required for 

local transportation of the box by the robots. The objectives include forces and torques as arguments.  

The formulation in the present context is to compositely or independently optimize the two objectives. In single objective 

formulation, we may simply add the scaled objectives and attempt to optimize the resulting function. In multi-objective 

formulation, we attempt to optimize the energy and time objectives independently. The problem in the present context is to solve 

the single/multi-objective optimization problems, when the sensory range measurements are contaminated with noise. Traditional 

derivative based optimization techniques do not apply to the present problems because of inherent discontinuity of the noisy 

objectives. The paper addresses evolutionary approach to solve similar noisy optimization problems (NOPs). 

Evolutionary algorithms (EAs) [16] aim at solving complex optimization problems by mimicking the Darwinian principle of 

the survival of the fittest [41]. EA commences from an initial population of trial solutions uniformly distributed over the search 

landscape. The trial solutions, representing the potential candidates of the optimization problem, are evolved through an 

adaptation phase, followed by a competitive selection phase for promotion to the next evolutionary generation. The relative merit 

of a trial solution is assessed by its corresponding objective function value, often called fitness. The ‘selection’ is an important 

step in EA as it filters quality solutions (with better fitness measure) from the pool of trial solutions while discarding poor 

solutions.  

Although EA literature has witnessed a radically divergent perspective in solving real-world optimization problems, there is a 

distinct lack of studies exploring the issues of handling uncertainty in presence of noise. The other forms of uncertainties that might 

corrupt real-world optimization problems include data incompleteness, inaccuracy in mathematical modelling, environmental 

condition variation, and infeasible (non-realizable) solutions [42], [66], [89], [98]. Although EA is inherently robust to low levels 

of noise due to its distributed nature and its non-reliance on gradient information [42], the impact of noise becomes undesirable 

when it greatly affects the fitness of the trial solutions. The noisy fitness measurements of the trial solutions may adversely distress 

the performance of selection operation in preserving the true quality solutions over generations in an EA.  

Mathematically, the noisy objective function of a trial solution X is represented by 

( ) ( )noisyf X f X                            (1) 

where ( )f X is the true objective function value and  is the amplitude of the injected noise. It is evident from (1) that due to the 

noise-induced dynamic variation of the objective surface, the objective function returns different values when repeatedly evaluated 

for the same trial solution. In such circumstances, a trial solution of superior quality than the rest of the population may be declined 

by the selection operation to pass onto the next generation because of its seemingly poor (noisy) fitness estimate. Contrarily, an 

essentially poor solution with illusively good fitness may deceive the selection process to get accommodation in the next generation 

[5], [15], [22], [25], [26], [43], [48], [118], [133], [134], [135], [137], [161], [164], [192], [196].  



For the sake of completeness, we here briefly introduce the other forms of uncertainty that might influence the objective 

function(s) of an optimization problem. They are homologous to noisy optimization, but the approaches to solve them differ from 

the approaches adopted for noisy optimization. The first homologue, the robust optimization, addresses the issue of the perturbation 

of the design variables (or the parameters of a trial solution) of a real world optimization problem, where the environmental 

characteristics cannot be retrieved with absolute uncertainty. If a trial solution X is quite susceptible to such variable perturbation  

in its vicinity, the implemented solution may lead to an objective function value ( )f X   significantly different from that of its 

theoretical measurement ( )f X . Robust optimization aims at minimizing the consequences of such variable perturbations by 

accentuating the search strategy towards identifying robust solutions, capable to confront with the parametric variations of physical 

systems [24], [35], [46], [60], [80], [93], [109], [126], [141], [142], [162], [184], [185], [195], [198].  

The second optimization problem addresses the uncertainty in truly assessing the objective function value of a trial solution 

from its approximated meta-model [96], [97], [99], [100], [114], [171]. Mathematically, the approximated objective function of a 

trial solution X is represented by 

( ) ( ) ( )approxf X f X e X                          (2) 

where ( )f X is the true objective function value and ( )e X represents 

an analytical form 

of objective function can hardly be formulated or the objective function evaluation is too time costly. The intricacy is then to 

accurately balance the economical (but erroneous) approximate fitness evaluations and the expensive (but accurate) true fitness 

evaluations [96], [97], [99], [100], [114], [171]. 

The last homologue refers to the dynamic optimization problem. It addresses the dynamic variation of the objective surface over 

time, which may result in shift in the locations of the optima as well. The fitness of a trial solution X is then a function of both 

X and time t, denoted by ( , )f X t . The primary challenges for solving such dynamic optimization problems [30], [54], [81], [88], 

[94], [117],  [136], [134] include i) efficiently tracking the movement of the optima, ii) capability to detect newly emerging optima 

in the search space, and iii) preserving population diversity to successfully respond to the dynamically changing environment 

without any restart.  

This paper focuses on the first category of uncertainty i.e., the issues of uncertainty management in selecting quality trial 

solutions in presence of noise in the objective surface(s). Ranking of trial solutions in presence of measurement noise is an open 

problem in EAs. It requires certain strategies for uncertainty management at each decision-making step to select relatively better 

solutions from the rest. This paper provides a survey of the various EA-based techniques that have been developed over the past 

few years for noisy optimization tasks. 

Usually, five methodologies are adopted in the literature to attack the problem of noisy evolutionary optimization, including i) 

explicit averaging using sampling strategy, ii) effective fitness estimation of a trial solution from its noisy fitness samples, iii) 

implicit averaging using dynamic population sizing, iv) improved evolutionary search strategies and v) robust selection. The 

explicit averaging strategy is concerned with evaluation of noisy objective function of a specific trial solution for a number of times 

(called sample size) and then referring to the aggregated measure (for example, the average) of the samples as its fitness estimate. 

The strategy is known as sampling [2], [3], [37], [39], [52], [63], [68], [75], [83], [92], [119], [131], [143], [146], [149], [150], 

[154], [155], [156], [173], [174], [175], [189], [202]. The multiple measurements of fitness samples usually have a non-zero 

variance. The traditional averaging approach, however, presumes uniform probability distribution of all fitness samples and thus 

fails to capture the local noise distribution effectively. The works in [38], [44], [104], [154], [155], [156], [167], [168], [169], [199] 

proposed alternative approaches to estimate the effective fitness of a trial solution from its noisy fitness samples by proficiently 

capturing the noise-induced uncertainty in their occurrences. 

Evidently, sampling diminishes the impact of noise due to periodically evaluating the objective function for the same trial 

solution. However, there are evidences [9], [11], [13], [17], [21], [28], [33], [63], [74], [82], [139], [140], [190] that a large sample 

size with a small population may fail to preserve quality solutions over evolutionary generations due to lack of explorative 

efficiency. This problem can be circumvented by the third alternative approach to solve noisy optimization. It presumes that the 

inherent characteristic of an EA to frequently sample the promising area in the search space results in many similar trial solutions 

in a large population. Hence, the infiltration of noise in the fitness estimate of a trial solution can be implicitly compensated by 

similar population members. 

There exists plethora of research outcomes on improving the evolutionary search strategy to handle noise in optimization 

problems, especially for multimodal fitness landscape(s). The search strategies are devised to precisely capture the characteristics 

of the noise-induced fitness landscape by adaptively tuning the control parameters to avoid the misleading direction of noise. 



Significant researches have been undertaken to adapt the mutation strength of EA to reduce the deceptive effect of noise [8], [12], 

[112], [163]. The effectiveness of mutation strength adaptation is studied in [23]. The Markov-chain formulation of the migration 

probability in [121] reveals the potency of high mutation probability to handle the jeopardizing effect of noise. Improved local 

exploitation strategies are dealt in [45] and [51] to effectively guide the trial solutions towards the true global optima. On the 

other hand, the efficacy of the exploration capability to avoid premature convergence in the presence of noise has been studied in 

[107]. In [77−79], the authors have adopted an experiential-learning-directed perturbation strategy to control the movement of the 

trial solutions based on the information acquired from the last few generations for faster convergence. The research outcome in 

[124] indicates that a chaotic jump induced controlled movement of trial solutions help them to avoid the deceptive local basins 

of attraction. Apart from the above-, the works proposed in [20], [72], [90], [105], [112], [122], [152], [160], [183] need special 

mentioning. 

Finally, the robustness of selection process against noise appears as an important concern of developing a noisy evolutionary 

optimization algorithm. There exists extensive literature to address the selection step to enhance reliability in filtering true quality 

solutions from the population even when noise is a predominant factor [36], [123], [130], [188], [193]. In [14], [32], [55], [58], 

[65], [165], [182], statistical hypothesis tests are used to identify the quality trial solution from a pair of competitors based on the 

measurements of their fitness samples. Probabilistic selection strategies have been adopted in [70], [91], [191], [197] to overcome 

the deterministic dismissal of true quality solutions due to infiltration of noise. In [71], a rolling tide characteristic is induced into 

a traditional multi-objective optimization to circumvent the deception by noise while selecting optimal solutions. A novel noise-

induced uncertainty-handling strategy is proposed in [86], [108] with an aim to enhance the robustness of the rank-based selection 

of trial solutions against noise. 

The rest of the paper is organized as follows. Section II reviews the methods for addressing explicit averaging in detail, 

followed by a survey on effective fitness estimation strategies in section III. The issue of implicit averaging is addressed in section 

IV. Section V contains a comprehensive description of various methods to improve the evolutionary search strategies in noisy 

fitness landscape(s). Existing frameworks used to improve selection in noisy evolutionary optimizations are discussed in section 

VI. Benchmark problems and performance metrics used to study the comparative analysis of the noisy evolutionary algorithms are 

listed in section VII. A discussion on the modality of use of the existing noise handling strategies and open research topics is 

given in section VIII. Section IX concludes the paper. 

II. NOISY OPTIMIZATION USING EXPLICIT AVERAGING 

The effective fitness estimate of a trial solution X in noisy objective surface is evaluated by 

( ) ( ( ) ) ( )f X f X p d  





          (3) 

where p(η) is the probability distribution of noise η contaminating the true objective function value ( ).f X  Since an analytical 

closed form of the effective fitness function in (3) is usually unavailable for most of the noisy optimization problems, it is often 
approximated using Monte Carlo integration [83].  

According to Monte Carlo integration, the noise-induced uncertainty in estimating the fitness ( )f X of an individual solution X  

can be reduced by re-evaluating the objective function value ( )f X several times, often known as sample size. The values of 

multiple fitness samples obtained by periodic re-evaluation of ( )f X are then averaged over to return the mean fitness estimate of 

.X The consequences of sampling strategy on a noisy evolutionary optimization are discussed in [131]. 

Let the sample size of ( )f X be n and ( )jf X represents the j-th sample of ( ).f X  Then using the principle of Monte Carlo 

integration, the mean fitness estimate ( )f X , sample standard deviation ( ( ))f X  and the standard error of the mean fitness 

( ( ))se f X  are calculated as 
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It is evident from (4) that sampling an individual’s objective function n times reduces ( ( ))se f X  by a factor of n , thus 

improving the accuracy in the mean fitness estimation. The objective now boils down to optimize the mean fitness estimate. In the 
noisy minimization problem, introduced in [143], an additional penalty term is also considered in conjunction with the mean fitness 
estimate. The strategy is realized in simulated annealing (SA) [39], [75]. The modified objective function to be minimized is given 
by 

mod
( ) ( ) 2 ( ) ( ( ))f X f X T se f X          (5) 

where T is the simulation temperature. It is gradually reduced over evolutionary generations. Minimization of the second term 
guarantees less uncertainty in the fitness assessment. Here α(T) is a weighing parameter which balances the significance of the 
penalty term with respect to the mean fitness estimate. To sustain the exploration capability of the algorithm in earlier phase while 
eventually narrowing the search towards global optima, α(T) is set as  

TT  0)(         (6) 

Here α0 is a small positive value and β is a constant controlling the rate of increase of α(T) with simulation temperature.  

Sampling strategies can be primarily classified into two categories based on adaptivity i.e., the precision required by a sampling 
strategy to know about the quality of a trial solution. 

i) Static sampling (SS): It allocates equal sample size (i.e., fixed number of re-evaluation of the objective function value) to all 
population members. However, the sampling requirement of different trial solutions in different regions in the search space 
may be different. For example, the trial solutions with high fitness variance may require large sample size to improve the 
accuracy in its fitness estimation, while a quality solution with low fitness variance needs to be assigned with a low sample 
size to reduce the run-time. Hence, the major shortcoming of the strategy is its incapability to handle the trade-off between 
the run-time complexity and the computational accuracy. 

ii) Dynamic sampling (DS): It allocates different sample sizes to individual population members based on their sampling 
requirements [3], [68], [146], [150], [202]. The sampling requirement of a candidate solution can be primarily influenced by 
one or more of the five vital principles of sample size selection (Fig. 1) including, a) fitness variance, b) periodicity in 
updating sample size, c) number of objectives, d) characteristics of the optimization problem and e) comparative analysis 
with other population members. Different possible classes of DS strategies are explained next [174]. 

a) Variance Depndent and Independent Sampling: The fitness variance dependent DS strategies allocate sample size to 

individual solution based on its respective fitness variance. Intuitively, large sample size is allocated to trial solutions with 

large fitness variance to enhance the quality of their mean fitness estimates. The fitness variance independent DS policies, 

however, determine the sampling budget of population members irrespective of the knowledge of the fitness variance.  

b) One-shot and Sequential Sampling: The one-shot DS strategy estimates the sample budget of an individual solution only 

for once. However, the one time selection of sample size may not be optimal for simultaneously achieving the optimum 

evaluation characteristic with reasonable computational complexity. This difficulty can be overcome by sequential DS 

strategies [37]. Here, after an initial allocation of sample budget, it is verified whether it is capable to achieve the optimal 

evaluation characteristic. If needed, a fixed number of additional samples of the objective function are periodically 

evaluated and the optimum criterion is again verified. This is repeated as long as no additional sample is required.  

c) Single and Multi-objective Sampling: The DS strategy has successfully been utilized in noisy single objective and multi-

objective optimization scenarios. Noisy multi-objective optimization algorithms determine the sampling requirements of 

the trial solutions either based on their individual fitness measures (for example, the Pareto rank in [62]) or an aggregated 

estimate of all the fitness measures (for example, the reference point distance in [61]). The examples of two cases of multi-

objective DS policy are given below. 

To jointly optimize multiple objective functions in a multi-objective EA, selection of trial solutions is performed by 

Pareto ranking [62]. The non-dominated solutions of a population are first placed into the Pareto front of rank 1. The 



already ranked members are then temporarily disregard from the current population. The non-dominated members are next 

identified from the rest of the population and are included into the Pareto front of rank 2. This continues until all 

population members are assigned with a specific Pareto rank. Evidently, Pareto ranking is induced by the fitness measures 

of all objective functions for individual trial solutions. The sampling strategy which allocates sample size to a trial solution 

based on its corresponding Pareto ranking of trial in a multi-objective EA, utilizes all the individual fitness measures of the 

trial solutions.  

Alternatively, the sampling requirement of a trial solution is often found to be influenced by an aggregated estimate of 

its respective multiple objective function values. For example, in reference point based non-dominated sorting genetic 

algorithm-II (R-NSGA-II) [61], a reference point R  is specified by user in his preferred zones in the multiple fitness 

landscapes. Let in a multi-objective problem of optimizing N objectives, the objective function values of a trial 

solution X (evolved through the evolutionary phase) and the user-specified reference point R are respectively given as 

1 2{ ( ), ( ),..., ( )}Nf X f X f X  and 1 2{ ( ), ( ),..., ( )}.Nf R f R f R The quality measure of X then can be captured by its distance 

from R in the multiple fitness landscapes, given by 

 

1

( , ) ( ) ( ) .

N

i i i
i

d X R w f X f R



        (7) 

Apparently, ( , )d X R  is a single objective aggregated quality measure of multiple objective function values of X . Here wi 

is a positive weight corresponding to the difference in the i-th fitness measures of X and R for i=[1, N]. Evidently, the 

sampling strategy determines the sampling requirement of the trial solution X based on the aggregated estimate of it fitness 

measures, captured by ( , )d X R . 

d) Independent and Coupled Sampling: The DS sampling strategy which incorporates the user-specified characteristics of 

optimization algorithm, is referred to as a coupled sampling policy. For example, the sample size allocation of a trial 

solution X  based on its distance ( , )d X R from the user-specified reference point R  in R-NSGA-II [61] is a coupled 

sampling stratagem. The independent DS strategy does not depend on the optimization criteria for the selection of the 

sample size.  

e) Individial and Competitive Sampling: Most of the existing DS strategy allocates sample size to an individual X  solely 

based on its own evaluation characteristics, for example, its fitness variance 
2

( ( ))f X or standard error ( ( ))se f X . 

However, there are traces of DS policies which allocate sample size based on a comparative study of performance of two 

individuals in the population. The first category is named as individual sampling while the latter one is often called as 

competitive sampling. Competitive DS strategy has found its immense application in the selection of quality solutions 

among two competitors. Let the objective function values of two competitor solutions be contaminated with noise to a 

large scale (for example, both have large fitness variances). Moreover, let the contenders are closely located in the fitness 

landscape (for example, their mean fitness estimates are quite similar). In such scenario, it is reruired to resample the 

objective function values of both the solutions as many number of times until better one is distinguished from the other 

with high probability. However, if both the competitors are less affected by noise and they are quite separated in the 

objective space, the better member can be selected with high probability without redundant additional sampling.  

 

Fig. 1. Classification of sampling strategies for noisy evolutionary optimization 

Once the sampling requirement of a trial solution is determined based on one (or more) of the aforementioned five criteria, the 

DS strategy allocates the sample size to the given trial solution based on either a linear or a non-linear functional relationship 

model between its sampling requirement and its respective sample size. Let n
min

 and n
max

 respectively represent the minimum and 

the maximum sample size. Similarly, the lower and the upper bounds of the sampling requirement are represented by r
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According to linear DS strategy [174], )(Xn


is set to be proportional with )(Xr


such that 

minmax
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minmaxmin )(
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rXr
nnnXn









.        (8) 

However, the linear setting of relationship between )(Xr


and )(Xn


may require a large value of n
max

 to effectively capture the 

uncertainty in the measurement of the fitness samples of )(Xf


. This difficulty is circumvented by the non-linear sample allocation 

strategy [174]. There can be three possible design models to control the rate of increment in the sample size with the sampling 
requirement. 

i) Accelerated Non-linear DS: Here the modulation of sample size )(Xn


with the sampling requirement )(Xr


 is given by 

1   ,)()( max   rXrXn


.      (9) 

with  as a positive constant controlling the (accelerated) rate of increase of )(Xn


with ( )r X . 

ii) Decelerated Non-linear DS: The objective of this DS policy is to allocate small sample size, say 10% of n
max

, to the trial 
solutions with sampling requirements below 50% while 80% of n

max
 are reserved for the candidates with sampling 

requirements as high as 90% of r
max

. The above necessity can be captured by the following model with  as defined 

previously 

1   ,))(()( max  rXrXn


            (10) 

iii) Combined Non-linear DS: In this case, the mathematical model of relationship between )(Xr


and )(Xn


 is designed to utilize 

the composite benefits of both accelerated and decelerated DS policies. Two such well-known mathematical models include 
Weibull distribution [101], given as 
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       (11) 

and logistic growth [194], given by 
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Here α >1 and β >1 represent the scale parameter and the shape parameter for Weibull distribution, κ denotes the growth rate 

of )(Xn


with )(Xr


following the logistic growth, λ symbolizes the relative sampling requirement (in %) with the highest 

growth in the sample size. The occurrence of the maximum growth close to the upper or the lower asymptotes is decided by 
the parameter υ >0. Both the models ensure a delay (or acceleration) in the sample size allocation at a lower (or higher) 
sampling requirement. The non-linear DS strategies are pictorially presented in Fig. 2. 
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Fig. 2. Non-linear functional relationship between the sampling requirement and the sample size 
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We now present some of the well-known sampling strategies. 

A. Time-based Sampling 

The time-based DS strategy [175] allocates sample size to a trial solution based on the evolutionary generation. In the early 

exploration phase of evolutionary generations, a larger sample size is preferred for the trial solutions far away from the global 

optima to capture the uncertainty in their fitness estimation in a relatively liberal way. Thus, it reduces the computational 

overhead at the early exploration phase. However, the sample size is increased with progress in evolutionary generation to ensure 

judicious selection of truly quality solutions with good and accurate fitness estimate. The sampling requirement )(Xr


is thus 

given by 

 max( ) ,   1r X G G


        (13) 

where G and Gmax represent the current and the maximum number of generations of the evolutionary optimization algorithm. The 

strategy requires the setting of only one parameter, α, to control the resampling rate. Evidently, here r
min

=0 and r
max

=1.  

In [176], the time-based sampling is realized in [177] by controlling )(Xr


based on the total number of function evaluations 

up to current generation, FEG. However, to enhance the degree of certainty in the objective function values of the final population 

members, a total number of FEfinal samples are preserved for the trial solutions in the final population of the evolutionary 

optimization algorithm [177]. Accordingly, the sampling requirement )(Xr


is thus given by 

( ) min 1, ,   1G

total final

FE
r X

FE FE




 
  
 
 

     (14) 

where FEtotal represents the total number of function evaluations used as the termination criterion of the evolutionary optimization 

algorithm. The time-based DS strategy falls under the categories of fitness variance independent, one-shot, independent and 

individual sampling policies. Moreover, it does not rely on the number of objectives. 

Another form of time-based sampling is realized in [176] by allocating the minimum number of samples n
min

 at the beginning 

of the optimization algorithm and abruptly increasing the sample size to n
max

 if the total number of function evaluations up to the 

current generation FEG is above a threshold value FETh. This is captured by modulating )(Xr


 as follows. 

0,   if 
( )

1,   otherwise

G ThFE FE
r X


 


      (15) 

The sampling strategy realized above is referred to as time-step-based sampling. However, instead of an abrupt increase in the 

sample size from n
min

 to n
max

, a gradual increment in sample size based on the function evaluations over the evolutionary 

generations can be realized by setting 

1

1
( )

1 exp G Th

total final

n X

FE FE

FE FE







   
     

   
   

     (16) 

where FETh  [0, 1] denotes the point of the highest growth and κ>0 denotes the growth rate. The occurrence of the maximum 

growth close to the upper or the lower asymptotes is decided by the parameter υ >0. 

B. Domination Strength-based Sampling 

The domination strength-based DS strategy [174] allocates sample size to a trial solution X


based on the number of solutions it 

dominates, denoted by ( ) .dom X  Higher the number of solutions ( )dom X dominated by X


, better is the quality of X


and hence 

more sample size is to be allocated for .X  A large sample size of such quality solution is valuable for the algorithm to gain 

accurate knowledge of the noisy fitness landscapes. Contrarily, a small sample size is allocated to a trial solution with a few 

members being dominated by it. This in turn helps in reducing the computational complexity by avoiding unnecessary re-

evaluations of inferior candidates. 



Let M denotes the possible maximum number of solutions being dominated by any member of the population P. In other 

words, 

max ( )
Z P

M dom Z


 .       (17) 

Apparently M ≥0. Intuitively, the sampling requirement )(Xr


should be set proportional to the size of ( ).dom X  In the 

exploration phase, when M >1, 0 ( ) 1r X  is set equal to  

( )
( )    if  1.

dom X
r X M

M
        (18) 

It is apparent that the strategy ensures a minimum sampling requirement )(Xr


=r
min 

=0 for a trial solution X


with 

( )dom X  . It is worth mentioning that M=0 indicates that all the population members are non-dominated to each other. Hence, 

all trial solutions are of superior quality and thus their sampling requirement must be maximum, i.e., )(Xr


=r
max

=1.  

One more fundamental viewpoint of the strategy is to consider higher sampling budget in the exploitation phase. In the 

exploitation phase, when the search converges towards the global optima, it is often found that M=1. In this scenario, most of the 

candidate solutions are expected to be in very close proximity to the Pareto optima. Under such circumstances, even if 

| ( )dom X |=0, X


 is assigned with a moderately high )(Xr


=0.5 to accurately capture the characteristics of the objective surfaces 

near the global optima. The aforesaid purpose can be satisfied by setting 

( )
,                     1

( )
( ) max 0.5, ,      1

1,                                    0

dom X
M

M
dom X

r X M
M

M


 


    
   

 



     (19) 

Evidently, the domination strength-based DS strategy falls under the category of comparative sampling, as the sampling 

requirement of a trial solution is determined based on the number of other solutions it dominates. Additionally, it also satisfies the 

criteria for fitness variance independent, sequential, truly multi-objective and independent sampling policies.  

C. Rank-based Sampling 

Like domination strength-based sampling, the rank-based sampling [174], [175] also ensures larger (or smaller) sampling 

budget for quality (or poor) trial solutions based on their Pareto ranks. In the traditional non-dominated sorting-based multi-

objective EA, the non-dominated trial solutions of the current population P are first placed into the Pareto front 1, denoted by 

FS(1). All the members of FS(1) are assigned with rank 1. The non-dominated members from the rest of the population, i.e., 

{P−FS(1)} are then identified and put into the Pareto front 2, given as FS(2). The ranks of all the candidates of FS(2) are set to 2. 

The Pareto ranking is continued until each members of the population is assigned with a definite Pareto rank. It is evident that 

members of Pareto front i (with rank i) dominate the residents of Pareto front j (with rank j). Lower the Pareto rank, better is the 

quality of a trial solution as it dominates a larger fraction of the current population.  

The rank-based DS strategy is thus concerned with allocating a large (or small) sample size for trial solutions in the leading 

(or last) Pareto fronts with lower (or higher) Pareto ranks. Let )(XR


 be the Pareto rank of a trial solution X


and Rmax be the 

maximum Pareto rank achieved by a population member in an evolutionary generation. Then )(Xr


is given by 

max
max

max

( ) 1
1 ,  1,   1( ) 1

1,                           1

R X
Rr X R

R




          

     (20) 

Here α is a user-specified parameter, which controls the rate of resampling. The rank-based DS strategy falls under the 

categories of fitness variance independent, sequential, multi-objective, independent, and comparative sampling policies. An 



extension of the traditional rank-based sampling is proposed in [175] with an aim to allot additional samples to trial solutions 

residing in the first M Pareto fronts. The dependence of ( )r X on )(XR


is here modeled as 

max
max

max

min( , ( )) 1
1 ,  1,   1( ) min( , ) 1

1,                                         1

M R X
Rr X M R

R




          

      (21) 

 The principal drawback of domination strength-based and rank-based sampling strategies lie in their inability in handling 

noise in many objective optimization problems where almost all the population members are non-dominated to each other over 

maximum number of evolutionary generations. This requires a setting of maximum sampling requirement r
max

=1 (and thus fixed 

maximum sample size) to most of the population members over every generation, leading to a high computational complexity. 

D. Standard Error Dynamic Resampling (SEDR) 

SEDR [149], [150], [173], strategy has been employed for solving both noisy single and multi-objective evolutionary 

optimization problems. The strategy is concerned with the optimal allocation of sampling budget to a trial solution based on the 

noise strength at its corresponding position in the search space. The contamination level of noise is captured by the standard error 

of the mean fitness estimate of a trial solution. In single objective scenario, the strategy commences from an initial estimate of the 

mean fitness value ( )f X of a trial solution X  , initially assigned with a low sample size n
min

. Then the strategy periodically re-

samples the objective function ( )f X  one more time and re-evaluates the mean ( )f X  as well as the standard deviation ( ( ))f X . 

This is re-iterated until the associated standard error of the mean fitness estimate ( ( ))se f X falls below a pre-defined threshold, 

denoted by seth. Hence, the strategy requires two predefined parameters, n
min

 and seth. Here the sampling requirement ( )r X is 

dependent on the standard error ( ( ))se f X . The pseudo-code for single objective SEDR strategy for a trial solution X  is given 

next [150]. 

 
Procedure single_objective_SEDR 

Begin 

1. Set ( )n X =nmin. 

2. Sample ( )f X for ( )n X times. 

3. Evaluate the mean fitness estimate

( )

1

1
( ) ( )

( )

n X

j

j

f X f X
n X



  . 

4. Calculate the sample standard deviation
2

1

1
( ( )) ( ( ) ( ))

( ) 1

n

j

j

f X f X f X
n X





 

 . 

5. Determine the standard error of the mean fitness estimate ( ( )) ( ( )) ( )se f X f X n X . 

6. If ( ( ))se f X >seth 

Then ( )n X = ( )n X +1 and go to step 2. 

End If. 

End. 
 

The strategy is under the categories of fitness variance dependent, sequential, single objective and individual DS strategies. 

The single objective SEDR strategy has been extended to the multi-objective scenario by averaging the standard error values for 

all the objectives. The pseudo-code for multi-objective SEDR strategy for a trial solution X with N objectives is presented next 

[150]. 

 

 

 

 



 

Procedure multi-objective_SEDR 

Begin 

1. Set ( )n X =nmin. 

2. Sample ( )if X for ( )n X times for i= [1, N]. 

3. Evaluate the mean fitness estimate 

( )

,

1

1
( ) ( )

( )

n X

i i j

j

f X f X
n X



   for i= [1, N]. 

4. Calculate the sample standard deviation 
2

,

1

1
( ( )) ( ( ) ( ))

( ) 1

n

i i j i

j

f X f X f X
n X





 

  for i=[1, N]. 

5. Determine the standard error of the mean fitness estimate ( ( )) ( ( )) ( )i ise f X f X n X  for i= [1, N]. 

6. Evaluate the average standard error 

1

1
( ) ( ( ))

N

i

i

se X se f X
N



  . 

7. If ( )se X >seth 

Then ( )n X = ( )n X +1 and go to step 2. 

End If. 

End. 
 

Apparently, the multi-objective SEDR strategy inherits all the characteristics of its single objective counterpart. However, 

instead of being single objective, it follows the principle of multi-objective DS strategy, influenced by the aggregated measure of 

the multiple objective function values. 

In [178], the threshold value seth is dynamically adjusted based on an additional user-defined parameter p [0, 1] indicating 

the level of accuracy in fitness assessment, as given by 

max min min
( ) (1 ) ( )th th th thse p p se se se


        (22) 

where seth
min

 and seth
max

 respectively denote the minimum and maximum values of seth and α>0 is a constant parameter 

controlling the rate of decrease of seth(p) with increase in the need of the accuracy level, preferably towards the convergence of 

the algorithm (p approaching 1). 

E. m-Level Dynamic Resampling (mLDR) 

Like SEDR, mLDR [149], [150], [173], strategy has also been used for handling noise-induced uncertainty in both single and 

multi-objective evolutionary optimization algorithms. According to the proposed policy, the standard deviation of fitness samples 

of a trial solution, instead of the standard error of the mean fitness estimate, is used to quantitatively identify the noise strength at 

the respective location of the given trial solution in the parameter space. The efficiency of the algorithm thus lies in the 

assignment of optimal sample size to trial solutions based on their respective noise strengths, captured by the corresponding 

standard deviation of fitness samples. The strategy is very competent to solve NOPs encompassing a finite number (say, m) of 

discrete intervals of the possible range of the sample standard deviations (representing the noise contamination levels). If the 

value of m is moderate, it is feasible to design a look-up table comprising m pairs, each including i) specified intervals of sample 

standard deviations and ii) the corresponding sampling budget. A solution is assigned with a sampling budget by first evaluating 

the solution’s sample standard deviation and then searching for the corresponding resampling rate in the look-up table. 

Like as in case of SEDR, mLDR also starts with an initial mean fitness estimate of a trial solution, being assigned with a 

sample size n
min

. Then the corresponding sample standard deviation ( ( ))f X  is calculated. It is then verified in the look-up table 

whether the required sample size ( ( ( )))n f X for the calculated standard deviation ( ( ))f X  has been reached by the sample size 

( )n X , already assigned to the given trial solution. If not, an additional fitness sample of the candidate is drawn and ( ( ))f X is 

updated and the entire procedure of adaptation of sample size is iterated. The process is terminated when the allocated sample size 

of the objective function is greater than equal to the required sample size. The strategy requires 2m+1 predefined parameters 

including, n
min

, m intervals of sample standard deviation (or noise strength levels), and the corresponding m resampling rates. 



Here the sampling requirement ( )r X of a trial solution X is dependent on the sample standard deviation ( ( ))f X . The pseudo-

code for single objective mLDR strategy for a trial solution X  is given next [150]. 

 
Procedure single_objective_mLDR 

Begin 

1. Set ( )n X =nmin. 

2. Sample ( )f X for ( )n X times. 

3. Evaluate the mean fitness estimate

( )

1

1
( ) ( )

( )

n X

j

j

f X f X
n X



  . 

4. Calculate the sample standard deviation 
2

1

1
( ( )) ( ( ) ( ))

( ) 1

n

j

j

f X f X f X
n X





 

 . 

5. Obtain the required sampling budget ( ( ( )))n f X from the look-up table.  

6. If ( )n X < ( ( ( )))n f X  

Then ( )n X = ( )n X +1 and go to step 2. 

End If. 

End. 
 

The sampling requirement of a trial solution X  in the multi-objective scenario [150] has been realized by averaging over the 

sample standard deviations of all N objectives of as given next. 

  
Procedure multi-objective_mLDR 

Begin 

1. Set ( )n X =nmin. 

2. Sample ( )if X for ( )n X times for i= [1, N]. 

3. Evaluate the mean fitness estimate 

( )

,

1

1
( ) ( )

( )

n X

i i j

j

f X f X
n X



   for i= [1, N]. 

4. Calculate the sample standard deviation 
2

,

1

1
( ( )) ( ( ) ( ))

( ) 1

n

i i j i

j

f X f X f X
n X





 

  for i=[1, N]. 

5. Evaluate the average sample standard deviation 

1

1
( ) ( ( ))

N

i

i

X f X
N

 



  .  

6. Obtain the required sampling budget ( ( ))n X from the look-up table.  

7. If ( )n X < ( ( ))n X  

Then ( )n X = ( )n X +1 and go to step 2. 

End If. 

End. 
  

Evidently, the single and multi-objective mLDR strategies inherit the characteristics of the DR sampling categories, similar to 

their respective SEDR counterparts. 

F. Fitness Based Dynamic Resampling (FBDR) 

The basic principle of FBDR [150], [173] is to assign higher sample size to quality trial solutions to gain accurate knowledge 

of the promising zones of the fitness landscape contaminated with noise while limiting the sampling budget for inferior 

candidates as low as possible to reduce the run-time complexity. Like SEDR and mLDR strategies, it is also applied for noisy 

single and multi-objective scenarios. The pseudo-code is provided next for single objective minimization problem [150]. 



 
Procedure single_objective_FBDR 

Begin 

1. Identify the minimum and maximum possible values of the objective function f, denoted by fmin and fmax. Thus evaluate the fitness 

range g = fmax – fmin. 

2. Set ( )n X =nmin. 

3. Sample ( )f X for ( )n X times. 

4. Evaluate the mean fitness estimate

( )

1

1
( ) ( )

( )

n X

j

j

f X f X
n X



  . 

5. Calculate the normalized fitness estimate ˆ( ) 1 ( )f X f X g  . 

6. Determine the additional sample size  max minˆ( ) ( )
add

n X f X n n    

7. Obtain the required sampling budget corresponding to the normalized fitness estimate, 
minˆ( ( )) ( )

add
n f X n n X  .  

8. If ( )n X < ˆ( ( ))n f X  

Then ( )n X = ( )n X +1 and go to step 3. 

End If. 

End. 
 

Evidently, for a quality (or inferior) solution X with a low (or high) mean fitness estimate ( )f X , the normalized estimate 

ˆ( ) [0,1)f X  is close to 1 (or zero), thus increasing (or decreasing) the sampling requirement. The multi-objective FBDR strategy 

is proposed in [150], which utilizes the average of the normalized fitness estimates ( )f X of all objectives to determine the 

sampling budget of a trial solution X . However, for a poor candidate solution X with sufficiently small ( )f X  (for example, 

close to zero), large sample size allocation only increases the computational complexity without providing necessary information 

about identifying the global optima in the noisy fitness landscapes. This is circumvented by allocating additional samples only 

when ( )f X is above a threshold, say 0.5, by setting 

   max min
( ) 2 max(0.5, ( ))

add
n X f X n n


        (23) 

Here α=1 increases ( )
add

n X linearly with ( )f X . A setting of α < 1 (or α >1) ensures accelerated (or decelerated) growth of 

( )
add

n X with ( )f X (Fig. 3). Hence the user-defined parameters here include n
min

, n
max

 and α. 
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Fig. 3. Effect of α on multi-objective FBDR strategy 
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( )f X  

 ( ) 2 max(0.5, ( ))r X f X


   

( )r X  



 
Procedure multi_objective_FBDR 

Begin 

1. Identify the minimum and maximum possible values of the objective function fi, denoted by fi
min and fi

max. Thus evaluate the fitness 

range gi = fi
max – fi

min for i= [1, N]. 

2. Set ( )n X =nmin. 

3. Sample ( )if X for ( )n X times for i= [1, N]. 

4. Evaluate the mean fitness estimate

( )

,

1

1
( ) ( )

( )

n X

i i j

j

f X f X
n X



   for i= [1, N]. 

5. Calculate the normalized fitness estimate ˆ ( ) 1 ( )i i if X f X g   for i= [1, N]. 

6. Evaluate the average normalized fitness estimate

1

1 ˆ( ) ( )
N

i

i

f X f X
N



  . 

7. Determine the additional sample size    max min
( ) 2 max(0.5, ( ))

add
n X f X n n


     

8. Obtain the required sampling budget corresponding to the average normalized fitness estimate, 
min

( ( )) ( )
add

n f X n n X  .  

9. If ( )n X < ( ( ))n f X  

Then ( )n X = ( )n X +1 and go to step 3. 

End If. 

End. 
 

It is apparent that the sampling requirement ( )r X is modulated by ˆ ( )f X and ( )f X for single and multi-objective cases 

respectively. The strategies are fitness variance independent, sequential, and individual sampling policies.  

The minimum and the maximum sample sizes are dynamically modified in [178] based on the user-defined parameter p [0, 

1], denoting the need of accuracy level in the fitness measurement, as follows. 

 min min min
( ) min , 1n p n p n

   
  

      (24) 

and    max max max min min
( ) min , 1n p n p n n n

          
    (25) 

where α>0 is a pre-defined constant. 

G. Hybrid Sampling 

Several sampling strategies are proposed in literature [150] by hybridizing two different sampling strategies for allocation of 

optimal sample size. Some of the well-known hybrid schemes are described below. 

1. Rank-Time-based Sampling 

According to the proposed policy in [174], the sample size allocated to a trial solution X is based on the minimum value 

among the sample size required by rank-based sampling (say, ( )
r

n X ) and the time-based sampling (say, ( )
t

n X ) strategies. In 

other words, 

  ( ) min ( ), ( )
r t

n X n X n X       (26) 

This strategy thus ensures minimal sample allocation at the earlier exploration phase of the evolutionary generations without 

sacrificing the quality of solutions at during convergence by accurately identifying the noise-induced uncertainty using larger 

sample size.  



2. Fitness Based Standard Error Dynamic Resampling (FBSEDR) 

FBSEDR strategy synergistically combines the principles of both FBDR and SEDR policies [150], [173]. Hence, it assigns the 

additional sample size to a trial solution X  based on its mean fitness estimate ( )f X  and the associated standard error ( ( ))se f X . 

The terminating condition for single objective SEDR strategy requires ( ( ))se f X >seth or
( ( ))

( )

f X

n X


>seth. Evidently, it in turn 

requires

2
( ( ))

( )
th

f X
n X

se

 
   
 

. SEDR and FBDR strategies thus are fused by setting the additional sample size 

 
2

max min ( ( ))ˆ ( )

( )
2

thadd

f X
f X n n

se
n X

 
    

 
 .     (27) 

The fusion in case of multi-objective scenario is similarly realized by  

   
2

max min ( ( ))
2 max(0.5, ( ))

( )
2

thadd

f X
f X n n

se
n X

  
     

 
 .      (28) 

3. Fitness Based m-Level Dynamic Resampling (FBmLDR) 

FBmLDR strategy utilizes the composite benefits of both FBDR and mLDR policies by setting 

 max minˆ ( ) ( ( ( )))
( )

2

add
f X n n n f X

n X
  

      (29) 

in case of noisy single objective scenario [150], [173] and 

   max min
2 max(0.5, ( )) ( ( ( )))

( )
2

add
f X n n n f X

n X


   

      (30) 

in case of noisy multi-objective optimization problems [150] respectively. 

H. Sampling based on Fitness Variance in Local Neighborhood 

In [154], [155], [156] the sample size of each trial solution is adapted by the fitness variance in its local neighborhood. The 

design philosophy relies on an underlying premise that a possible measure of creeping of noise in the neighborhood of a trial 

solution is anticipated from the fitness variance of a subpopulation around it. A large (or small) fitness variance among the 

subpopulation members designates a large-scale (or small-scale) detrimental effect of noise in the local neighborhood (of the 

given trial solution). Under this situation, it is apparent to draw a large (or a small) sample size to accurately estimate the fitness 

of the given trial solution (or to reduce the run-time without sacrificing the quality of solutions).  

Several formulations of the sample size selection can be adopted by sustaining a smaller sample size at lower fitness variance 

and a larger sample size at larger fitness variance in the local neighborhood of a trial solution. One simple approach could be 

proportional selection, where the sample size ( )n X is set proportional to the fitness variance ( )v X (above a pre-specified 

threshold, Th) in the local neighborhood of X [154]. The lower quartile of the fitness variances in the neighborhood of each 

member in the population is set as the global threshold Th. The selection of lower quartile ensures that sample size should be 

increased even when the noise-level is one-fourth of its largest possible occurrence. The functional form of relationship (Fig. 4) 

between ( )n X and ( )v X is captured by setting 

min

max min
min

max

,      if   0 ( )

( )
( ( ) ), otherwise

n                                         v X Th

n X n n
n  v X Th   

n Th

  


  
 



       (31) 



where v
max

 represents the maximum fitness variance in the local neighborhoods of all population members in a specific 

generation. 

 

Fig. 4. The linearity used to adapt sample size with fitness variance in local neighborhood 

However, simply setting a proportional law demands a very large ( )n X at very large ( )v X , which may not be profitable in 

many contexts, particularly for practical optimization problems. Alternatively, a logistic function may be employed to serve the 

purpose [155]. As shown in Fig. 5, the relationship between ( )n X and ( )v X is a continuous non-decreasing function within [n
min

, 

n
max

]  

min max min( ) ( ) (1 exp( ( )))v X n n n v X            (32) 

 

Fig. 5. The nonlinearity used to adapt the sample size with fitness variance in the local neighborhood. 

Other forms of non-linear functional relationship between ( )n X and ( )v X are proposed in [156], [158], respectively given by 

min max min( ) ( ) tanh( ( ))n X n n n v X            (33) 

and                      
max min max min( ) ( )

( ) arctan( ( ) )
2

n n n n
n X v X Th



 
                   (34) 

I. Progress-based Dynamic Sampling 

Progress-based DS strategy is proposed in [175] to handle noise in reference point based non-dominated sorting genetic 

algorithm-II (R-NSGA-II). In traditional NSGA-II, the merged population PG, comprising both the parent and the child 

population, are sorted into a number of Pareto fronts according to nondominating criteria. The parent population for the next 

generation is constructed by selecting the non-dominated sets of solutions according to the ascending order of their Pareto 

ranking. However, not all trial solutions of a specific lower rank Pareto front may be completely accommodated in the next 

generation parent population of fixed size. In such partially fitting Pareto front, the trial solutions with higher crowding distance 

measure are prioritized for being promoted to the next generation to maintain population diversity. The diversity metric, realized 

with crowding distance in traditional NSGA-II, is replaced with reference points of R-NSGA-II. The reference points are defined 

by the decision maker in the preferred zones in the objective spaces. Trial solutions closer to a reference point possess a higher 

selection priority. The reference points can be created, adapted, or deleted interactively during the optimization run. The reference 

points can be of two types, feasible and infeasible. Feasible reference point is either located on a Pareto front or a trial solution 

can be found (over generations of R-NSGA-II) to dominate the reference point. Infeasible reference point is neither located in a 

front nor it can be dominated by any candidate solution. 

n
max

 

n
min

 

0 

( )n X  

( )v X  v
max

 

nmi

n 

( )v X

 

Th vmax 0 

( )n X  

nma

x 



The essence of the progress-based DS strategy is to adapt the sampling requirement of a trial solution based on the progress of 

the entire population towards a reference point R (irrespective of feasibility criteria) of R-NSGA-II. The average distance of all 

population members from R  is referred to as the progress factor pf. However, due to inherent optimization characteristics of R-

NSGA-II, pf is found to be fluctuating over evolutionary generations. A more reliable way is thus to vary the sampling budget 

with progress factor pf averaged over the last g generations. Evidently, a small value of pf  (i.e., a small distance of the entire 

population from R ) indicates the convergence of the population towards the reference point R . In such scenario, it is expected to 

draw more fitness samples for all the candidates of the converged population to extract accurate information of the extent of noise 

contamination in the preferred zones of the fitness landscapes (i.e., close to R ). Moreover, to save sampling budget for the 

population with a large value of pf , beyond a pre-specified threshold pf 
max

, minimum samples are drawn. The aforementioned 

principle can be realized by setting 

 max

max

min ,
( ) 1

pf pf
r X

pf


 
 

   
 
 

       (35) 

and  min max min
( ) ( )n X n r X n n                     (36) 

The performance of the strategy relies on the proper selection of n
min

, n
max

, α and pf 
max

. The major inadequacy of the progress-

based sampling is that it allocates equal sample size ( )n X  to all population members X of a current generation, as all of them 

have the same average progress factor pf . Hence there will be a waste of significant run-time due to assignment of a large sample 

size to the dominated trial solutions.  

J. Distance-based Dynamic Sampling 

The inefficiency of the progress-based DS strategy (for balancing the optimal sample allocation among the quality and inferior 

members of the same population) can be avoided by augmenting the previously mentioned sample allocation scheme with the 

distance of individual member from the reference point R . Distance-based DS strategy assigns more samples to trial solutions 

closer to the preferred reference point. This in turn helps to identify judiciously the true quality solutions in the preferred area in 

the objective surfaces. According to the proposed strategy, the sampling requirement ( )r X  of a trial solution X , with a 

normalized distance ( )d X [175] from the reference point R , is given as 

 ( ) 1 ( )r X d X


                                 (37) 

where    
( )

( ) min 1, ASF X
d X

D

 
   

 

                  (38) 

and ( )ASF X represents the value of achievement scalarizing function [175] for the given pair of X and R . D denotes the 

maximum reference point distance of the initial population of R-NSGA-II. The strategy also utilizes non-linear transformation 

functions to determine the sample size ( )n X corresponding to ( )r X , based on whether the reference point is feasible or infeasible. 

The proposed strategy also adapts a non-linear transformation function dynamically to estimate ( )n X from ( )r X  (during run-

time of the optimization), based on whether R  is feasible or not. However, the feasibility of the reference point is unknown at the 

beginning of the evolutionary optimization. Hence, at the earlier exploration phases of optimization, the reference point is 

assumed infeasible and an accelerated non-linear transformation is preferred for sample size allocation. To accomplish the 

dynamic increment of sample size, two additional criteria are utilized along with the reference point distance. 

1. Progress-based sampling: Intuitively, it is anticipated that the augmentation of the distance-based sample allocation strategy 

with the progress-based sampling scheme amends the optimal selection of sample size. The hybrid methodology realized with 

distance-based and progress-based sampling strategies assign a maximum of n
max

 samples to a certain percentage of best members 

of the current population based on its progress factor pf . As pf is gradually reduced with the convergence of population, more 



quality solutions from the population are assigned with maximum sample size. The range of pf (per generation in percentage) 

and the corresponding percentage of population members with the maximally allocated samples is given in Table-1.  

TABLE 1: RANGE OF pf  AND CORRESPONDING PERCENTAGE OF BEST POPULATION MEMBERS ASSIGNED WITH MAXIMUM SAMPLE SIZE  

Range of pf per generation percentage of best population members to be assigned with nmax samples 

10%≤ pf  Only the solution dominating R  

5%≤ pf <10% Only the hypothetically best solution closest to R   

2.5%≤ pf <5% 10%  

1%≤ pf <2.5% 20%  

pf <1% 40%  

 

The sampling requirement ( )r X is here modeled as  

1 ( )
( ) min 1,

ˆ1

d X
r X

d

         

                             (39) 

where d̂ resembles the maximum reference point distance of a trial solution among the selected best population members 

corresponding to the population with progress factor pf  [175].  

2. Time-based sampling: In early explorative optimization phase, trial solutions may be trapped at local optima. It is not useful to 

draw more samples for these locally trapped solutions, even if they are close to the reference point. Rather the noise-induced 

uncertainty may help them to escape the local optima. The problem can be solved by utilizing distance and progress-based 

sampling strategy with the time-based allocation scheme. It dynamically changes the transformation functions to increase sample 

size with an increase in the time elapsed from the beginning of the optimization (Fig. 6). 
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Fig. 6. Non-linear transformation of sampling budget to sample size using distance, progress, and time-based sampling strategies 

Evidently, both progress-based and times-based sampling schemes are fitness variance independent, coupled sampling 

strategies that determine the sample size for each solution individually, perform sequential sampling, use the reference point 

distance that is an aggregated form of the objective values. 

K. Confidence-based Dynamic Resampling (CDR) 

CDR is proposed in [189]. It is a pure multi-objective, sequential, competitive sampling strategy. It also utilizes fitness 

variance information of two competitive solutions to determine the solution to be resampled further based on Welch confidence 

interval test [101]. Initially all population members are assigned with an equal sample size, say n
min

. The mean estimate and 

sample standard deviation of all objective functions of each candidate solution are then evaluated. Next, the trial solutions are 

sorted into a number of Pareto fronts according to the non-domination principle based on their mean fitness estimates. However, 

the so far placement of non-dominated solutions in the same Pareto front may be misleading as the domination relationship 

( )n X in % 

of 

maximum 

samples 

( )r X  

in % 



between any two population members is derived for same sample size for both of them. Hence, a second order filtering is done in 

each Pareto front to determine possible true relationship between any two candidates of the sorted population. This is realized 

here by evaluating the Welch confidence interval value between two contenders jX and kX , given as 

   2 2

,1
2

( ) ( )
( ) ( )

( ) ( )

i j i k

i j i k
df j kN

f X f X
f X f X t

n X n X


 


   .     (40) 

for i= [1, N]. Initially ( )jn X = ( )kn X =n
min

. Here α represents the confidence level of a specific Pareto front. To ensure the highest 

accuracy of identifying the approximate Pareto front in noisy fitness landscapes, α nearly equals to one for competitor solutions, 

jX and kX , of Pareto rank 1. The value α is reduced by a step of 0.5 for the succeeding Pareto fronts. N represents the number of 

objectives of the problem while df denoting the degree of freedom for a paired t-test, given as 

   
2 2

2 2
( ) ( )

( ) ( )

( ) 1 ( ) 1

i j i k

j k

j k

f X f X

n X n X

df
n X n X

    
   
   
   

 
 

.                (41) 

If the Welch confidence intervals corresponding to all N objectives of jX and kX do not include zero, a statistically significant 

difference is inferred between the performance of jX and kX with the given confidence level α. Hence, the dominating solution 

or the solution with higher crowding distance is returned. 

However, if any of the N intervals for the pair jX and kX include zero, it indicates a statistically insignificant discrepancy in 

their performances and thus requires further resampling to identify the better one. The solution among jX and kX  possessing the 

largest sample standard deviation in the objective fi (i [1, N]) with the largest interval including zero (that is, the objective with 

the largest potential to reduce the undesired insignificance) is the one resampled. After resampling, the Welch confidence 

intervals are re-evaluated by statistical comparison of all N objectives of jX and kX . The criterion for the statistical significance 

of the difference in the performance of jX and kX  is then again evaluated. This is repeated until the performance difference is 

proved significant.  

However, the increased sample size should be bounded by an upper limit n
max

. If the resampling of one of the members among 

jX and kX , say jX , has already reached n
max

 but statistically significant performance disparity till not found, it is not further 

resampled. Instead, the particular objective of the remaining member kX , having the largest sample standard deviation, and the 

largest interval comprising zero, is resampled. Then the similar iterative processes of calculating confidence intervals and 

validation of the statistical significance in their performance difference are performed. Once the terminating condition is satisfied, 

the dominating solution or the solution with higher crowding distance (if the contenders belong to the same Pareto front) is 

declared as the conqueror. 

L. Noise Analysis Selection 

Another single objective comparative sampling scenario is found in [47], [92], [132], where the difference ( ) ( )j kf X f X in 

the fitness estimates of two contenders is compared with 2s where s represents the standard deviation of noise jeopardizing the 

objective surface. The comparison of the fitness difference with 2s is justified by considering Gaussian distribution of fitness 

samples with 95.4% of the samples falling in an interval with a width of 4s and center at the mean value of the distribution [170]. 

 If ( ) ( )j kf X f X >2s, the member among jX and kX with better fitness is returned as the winner with complete certainty. 

Otherwise, the statistical comparison indicates that the noise bands of the two solutions significantly overlap. To select the better 

solution judiciously, farther resampling is required. The normalized measure of the degree of overlap between the two noise 

bands is given by 



2 ( 2 )

2 ( 2 )

l s h s

h s l s

  
 

  
                                   (42) 

where l=min( ( ), ( )j kf X f X ) and h=max( ( ), ( )j kf X f X ). Based on  , the minimum additional sample size to resample 

both jX and kX for reliable selection is calculated as 

2
1.96

2 (1 )

add
n

  
   

    

      (43) 

where 1.96 represents the upper critical value of Gaussian distribution with a confidence level of 0.95 [170]. 

M. Optimal Computing Budget Allocation (OCBA) 

OCBA technique [50], [110], [116], [145] is concerned with optimal allocation of sample size to each candidate solution to 

enhance the simulation efficiency with a given computing budget T. In other words, OCBA policy assigns sample sizes to 

population members by maximizing the probability p(cs) of correct selection of the best trial solution bestX (such 

that ( ) ( )best jf X f X for j=[1, NP]) from the population of NP individuals 1 2, ,..., NPX X X , while satisfying 

1 2( ) ( ) ... ( ) .NPn X n X n X T                          (44) 

For minimization problem, the probability of correctly identifying the optimal solution bestX is given by 

 
1,

( ) ( ) ( ) 0

best j

NP

best j

j X X

p cs p f X f X

 

 
   
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 

.        (45) 

Considering the Bonferroni inequality [50], [145], 
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 

 ,             (46) 

the lower bound of p(cs), referred to as the approximate probability of correct selection of bestX , is given by 

 
1,

( ) 1 ( ) ( )

best j

NP

best j

j X X

ap cs p f X f X

 

   .             (47) 

The aim of OCBA now can be mathematically formulated as [50], [145] 
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    (48) 

Considering normal distribution of fitness samples of trial solutions and for T→∞, it is shown in [50], [145] that ap(cs) can be 

asymptotically maximized by setting 

1. 
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n X f X
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       (49) 



2. 

2

2
1,

( )
( ) ( ( ))

( ( ))
best j

NP
j

best best

j X X j

n X
n X f X

f X

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      (50) 

for j, k{1, 2, …, NP}, j k bestX X X  and , ( ) ( )best j j bestf X f X   .  

The OCBA technique, described next, is a sequential, truly multi-objective, fitness variance dependent, comparative sampling 

policy. 

 

Procedure OCBA 

Begin 

1. Set the index for evolutionary index G=0 and sample ( ( ))jf X G  for ( (0))jn X =nmin times for j= [1, NP]. 

2. Perform additional Δ simulations for ( ( ))jf X G and thus evaluate new values of ( ( ))jX G and δbest, j for j=[1, NP]. 

3. Determine ( ( 1))jn X G  using the evaluated values of ( ( ))jX G and δbest, j to satisfy OCBA conditions (1) and (2) for j=[1, NP]. 

4. Perform  max 0, ( ( 1)) ( ( ))j jn X G n X G  additional simulations for  ( ( ))jf X G  for  j=[1, NP]. 

5. Set G←G+1. 

6. If 

1

( ( ))
NP

j

j

n X G T



  

Then go to step 2. 

End If. 

End. 
 

In [49], [179], OCBA technique is used to find the optimal sampling budget of the population members to find the best m trial 

solutions out of the NP population members. It is realized by partitioning the entire population P into two sub-populations, 

including Sm consisting of the m best solutions and the rest as P\Sm. For minimization problem, the probability of correctly 

identifying m optimal solutions is given by 
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For a constant threshold c, p(csm) can be approximated as 

 

 

   

( ) ( ) ( )

         ( )   and  ( ) ,   and 

         ( ) ( )

j m k m

j m k m

m j k

X S X S

j k j m k m

j k

X S X S

p cs p f X f X

p f X c f X c X S X S

p f X c p f X c

 

 

 
  
 
 
 

    

   

.       (52) 

The OCBA-m algorithm can now be formulated as 
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The Lagrangian relaxation of (53) is given by 
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where λ is the Lagrange multiplier. The Karush-Kuhn-Tucker (KKT) conditions of (54) are given by 
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      (55) 

Considering normal distribution of fitness samples and ( )j jf X c   for j=[1, NP], we can have 
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and                        
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Moreover, let, 

1
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Considering T→∞ and combining (54)−(58), we have 
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To find the optimal setting of the threshold c, the trial solution in Sm and P\Sm are arranged in the ascending order of their 

effective fitness estimates (for minimization problem). Let the trial solutions at the bottom and top positions of Sm and P\Sm are 

respectively denoted by mX and 1mX  . Intuitively, the optimal value of c is identified by maximizing both ( )mc f X and 

1( )mf X c  , which yields [179], 
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The complexity of different sampling methodologies has been studied in [5], [48], [118], [133−135]. Eight different non-

adaptive sampling rules are compared in [118] based on the number of samples of trial solutions in generation G as given in 

Table-2. The performance of 2exp and polynomial functions gradually deteriorate with increase and decrease in search space 

dimensions respectively. Contrarily, math2 remains successful in attaining the near-optimal solution in both situations. In [5], two 

additive noise models are considered, including the Gaussian noise and heavy tailed noise (with finite variance), to examine the 

contamination effect on the run-time of the algorithm. As evident from Table-3, the run-time of the algorithm with Gaussian 

noise-corrupted fitness measures differs from the one in the absence of noise by an additional logarithmic factor. However, in the 

presence of the heavy tail additive noise, the run-time is quadratic on the run-time in the noise-free case. 

TABLE 2: COMPARISON OF NON-ADAPTIVE SAMPLING RULES IN D-DIMENSIONAL SEARCH SPACE    

Sampling rule Sampling Requirement at Generation G 

Linear G 

Quadratic G2 

Cubic G3 

2exp 2G 

exp/10 exp( 10)G    

math1 
2

exp(4 5 )G D D 
  

 

math2 
2

exp( 10)G D 
  

 

math3 
2

exp( )G D D 
  

 

 

TABLE 3: COMPARISON OF RUN-TIMES OF DIFFERENT PROBLEMS SOLVED BY (1+1) EA    

Problem Run-time (Noise-Free) 
Run-time in Presence of 

Gaussian Noise Heavy Tail Noise 

OneMax O(D log D) O(D (log D)2) O(D2 (log D)2) 

Max Clique O(D5) O(D5 log D) O(D10) 

Sorting O(D2 log D) O(D2 (log D)2) O(D4 (log D)2) 

III. FITNESS ESTIMATION 

Because of sampling, we have multiple fitness measurements of a given trial solution. These measurements in general take 

different values with a nonzero variance. Traditional noisy evolutionary algorithms estimate the true fitness of a given trial 

solution by averaging over its noisy fitness samples [186]. However, this averaging strategy presumes equal probability of 

occurrence of all fitness samples, thereby offering a poor fitness estimate in most of the real situations. In [127], it is shown that 

noise does not always follow normal or Gaussian or other central distribution, for which averaging could be a good estimate. 

Under such situations, the kurtosis and skewness are shown to be two important parameters to describe the stochastic nature of 

noisy fitness samples. Alternative approaches of estimating fitness of a trial solution, considering non-uniform distribution of its 

fitness samples, are proposed in [38]. 

A. Expected Fitness Estimation using Uniform Fitness Interval  

The proposed strategy [154], is concerned with the evaluation of the expected value of the samples of ( )f X , symbolized 

by ( ( ))E f X . To accomplish the strategy, the minimum and the maximum value of the observed samples are first respectively 

recorded as 
min ( )f X  and

max ( )f X . Now the entire range
min max[ ( ), ( )]f X f X  is divided into Q intervals of equal length as 

shown in Fig. 7. The number of samples residing in the j-th interval (specified by [j
min

, j
max

]) is denoted by cj for j= [1, Q]. Then 
the probability of occurrence of fitness samples in the j-th interval, pj, is calculated as follows. 

   = ( )j jp c n X  for j=[1, Q].       (61) 



 
Fig. 7. Fitness intervals in the sample space 

Representing ( )jf X , the average fitness of X in the j-th interval, for j= [1, Q] by the centre of the same interval, i.e., 

 min max( ) / 2jf X j j  ,        (62)
              

 

we obtain ( ( ))E f X as 

  
1

( ( )) ( )
Q

j
j

j

E f X p f X


  .                         (63)         

B. Expected Fitness Estimation using Non-uniform Fitness Interval  

The uniform partition of sample space, being independent of sample distribution, may not be capable to identify the true 
probability of occurrence of fitness samples suitably over a wide space. An alternative approach is given in [155]. Instead of 

dividing the sample space min max[ ( ), ( )]f X f X  in pre-specified Q intervals, the proposed strategy deals with non-uniformly 

partitioning the sample space based on the fitness variance 2 ( ( ))f X . 

First, the entire range min max[ ( ), ( )]f X f X  is divided into two intervals of equal length. The resulting intervals are 

represented by min mid[ ( ), ( )]f X f X  and mid max[ ( ), ( )]f X f X , respectively where mid min max( ) ( ( ) ( )) / 2f X f X f X  . If the 

variance of the fitness samples lying in the first interval is found to be greater than 2( ( )) ( )f X n X , it is again subdivided into 

two more equal intervals, represented by min mid,1[ ( ), ( )]f X f X  and mid,1 max[ ( ), ( )]f X f X , respectively, 

where mid,1 min mid( ) ( ( ) ( )) / 2f X f X f X  . The same approach is used in the second interval also. The same procedure is 

repeated for all subsequent intervals until the variance of the fitness samples in each interval falls below 2( ( )) ( )f X n X . 

Consequently, the entire sample space min max[ ( ), ( )]f X f X is now divided into Q (not pre-specified) intervals of unequal length 

as indicated in Fig. 8.  

 
Fig. 8. Fitness intervals in the sample space 

It is evident from the proposed nonuniform partitioning of the sample space that the fitness samples in the longer intervals are 

rare samples, probably owing to noise. Hence, their contribution to the true fitness estimate of X  should not be regarded similarly 
to that of the fitness samples in the smaller interval. We measure the contribution of the fitness samples of the interval j to the 

fitness estimate of the trial solution X  by the probability measure 

= ( )j jp c n X         (64) 

where cj represents the number of samples of ( )f X  in the jth interval for j=[1, Q]. Let ˆ ( )jf X  be the median value of the 

samples of ( )f X  in the j-th interval, for j = [1, Q]. The expected fitness estimate is then obtained by 
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C. Centroid Fitness Estimation using Interval Type-2 Fuzzy Set 

An interval type-2 fuzzy set (IT2FS) model is employed in [156] [159] to model the noise-induced uncertainty in the 
occurrence of fitness samples. First, the sample space is divided into Q intervals of equal length (as done in case of uniform 

partitioning). The ( )f X in each interval is represented by a Gaussian type membership function (MF) with mean and variance 

equal to the respective mean and variance of the fitness samples in the selected interval. An IT2FS ( ( ))
A

f X
 
is constructed (Fig. 

9) taking union of all such Q type-1 Gaussian MFs, each one for one interval. The footprint of uncertainty (FOU) of ( ( ))
A

f X  

represents the possible uncertainty in the sample space of ( )f X . The FOU is bounded by two curves, upper membership function 

(UMF) ( ( ))A f X and lower membership function (LMF) ( ( ))
A

f X  [125]. The UMF is then approximated as a flat-top MF to 

maintain convexity characteristics. 

 

Fig. 9. IT2FS formation from primary memberships of fitness samples lying within the range 
min max[ ( ), ( )]f X f X  

IT2 defuzzification is then performed to determine the left and right end-point centroids [125], Cl and Cr respectively, using  

1 1

1 1

1 1

1 1

. ( ) . ( )

( ) ( )

. ( ) . ( )

( ) ( )

ql

m m m mA A
m m l

l ql

m mA A
m m l

qr

m m m mAA
m m r

r qr

m mAA
m m r

z z z z

C

z z

z z z z

C

z z

 

 

 

 

  

  

  

  

 



 

 



 

             (66) 

where l (or r) represents the left (or the right) switching point from UMF to LMF (or from LMF to UMF) for q distinct points in 

the interval min max[ ( ), ( )]k i k if X f X . Here zm symbolizes the m-th sampled point in the same interval with z1=
min ( )f X  and 

zq=
max ( )f X . The centroid fitness ( )cf X , obtained by 

( ) ( ) 2c l rf X C C  ,      (67) 

 is then referred to as the true estimate of ( )f X . 

D. Memory based Fitness Evaluation 

The approaches proposed in [104], [167], [168], [169], are concerned with evaluating the effective fitness estimate of a trial 
solution not only based on its own sampled fitness, but also on the sampled fitness of the remaining population members. This 

information is stored in a memory, which is referred to as explicit memory or history of search. Let X be a trial solution 

max ( )f X
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j
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X


in its history of search. It is worth mentioning that the trial solution X is also included 

in its history of search with 1X X . The true and sampled fitness (in noisy environment) of each jX are respectively represented 

by ( )jf X and ( )noisy jf X  for j= [1, H]. Let dj represents the distance of jX  from X in the parameter space for j= [1, H]. 

According to the proposed approach in [167], ( )jf X is normally distributed around ( )f X with a variance kdj, denoted by 

( ) ~ ( ( ), )j jf X f X kdN       (68) 

Similarly, ( )noisy jf X is assumed to be distributed normally with mean ( )f X and variance kdj+σ
2
 for zero mean normal 

distribution of additive noise η of variance σ
2
. Symbolically,  

2( ) ( ) ~ ( ( ), )noisy j j jf X f X f X kd   N .           (69) 

Hence, the probability density function of ( )noisy jf X is given by 
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The probability of obtaining the fitness estimate of X jointly based on the sampled fitness values of the H members in its 
history of search is represented by 

 
1

( ),

H

noisy j j

j

L p f X d



 .                       (71) 

Treating L as the likelihood with respect to ( )f X , the effective fitness estimate, ( )Hf X , can be obtained by maximizing L 

for ( )f X . It then returns ( )Hf X as a weighted average as its own samples fitness and the sampled fitness measurements of the 

other members in its history of search, given by 
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The proposed approach, however, faces difficulty in truly identifying the global optima, if it is located outside the region, 
covered by the history of search. The trace of memory-based noise handling strategy is also found in [199].  

E. Fitness Inheritence  

Fitness inheritance methodology, realized in noisy genetic algorithm in [44], aims at estimating the fitness of an offspring 

based on the fitness measures of its pair of parents. Let ( )jf X and ( )kf X be the mean fitness estimates of the parents, 

jX and kX , of a given trial solution .X  The fitness variances of jX and kX are denoted by ( ( ))jf X  and ( ( ))kf X  

respectively. Instead of resampling the offspring X , it is first evaluated only once. Let the fitness of X  after single evaluation 

be ( )f X . The evaluated fitness ( )f X is accepted as the fitness estimate of X if it satisfies the following statistical comparison, 

given by 

3 ( ) 3f X                          (73) 

where,     
( ) ( )

2

j kf X f X



       (74) 



and     
( ( )) ( ( ))

2

j kf X f X 



      (75) 

Hence the approach eliminates the computational overhead associated with periodic evaluations of X . However, if 

( )f X fails to satisfy the condition, the need for sampling X becomes necessary to reduce the adverse effect of noise infiltration 

in its objective function value. Under such scenario, X is sampled for a pre-specified number of times. The resulting fitness 

samples of X are then averaged to return its mean fitness estimate ( )f X . 

Although the proposed strategy ensures reduction in the computational complexity by avoiding unnecessary re-evaluations of 
a trial solution if it satisfies the statistical test, it may fail to precisely locate the global optima in the objective surface 
contaminated with noise of large variance. It is evident from (75) that larger the average value δ of the fitness variance of parent 
solutions (indicating a large scale adverse effect of noise), greater is the possibility of accepting the single fitness estimate 
(without resampling) of the offspring trial solution. Apparently, it directs the search towards noise-prone area in the search space.    

IV. NOISY OPTIMIZATION USING IMPLICIT AVERAGING  

An alternative approach to explicit averaging is implicit averaging, which aims at enlarging a population size of an EA to 

reduce the contamination effect of noise in a trial solution. It stems from the supposition that an EA, with its population-based 

meta-heuristic explorative capability, usually encounters with the same trial solutions often during searching in the parameter 

space over evolutionary generations. Every time it comes across the same trial solution through its evolutionary search dynamics, 

it evaluates its fitness, effectively re-evaluating the given trial solution periodically [7], [85]. The strategy is thus named as 

internal sampling or averaging. Apparently, to reduce the adverse effect of infiltration of noise in the fitness landscape using 

implicit or internal sampling, the size of the population needs to be large enough [10], [56], [57], [84].  

A comparative analysis of the relative robustness of traditional population-based over the point-based search strategies is 
undertaken in [139], [140]. In each category, two members are considered. The evolutionary strategy (ES) [27] and genetic 
algorithm (GA) [129] are considered as members of population-based optimization methods while pattern search (PS) [87] and 
threshold acceptance (TA) [64] are considered as the members of the point-based search method. The performances of the 
algorithms of both categories remain comparable without employing sampling policy. However, when each solution is re-evaluated 
with fixed sample size (say, 10), the population-based methods in noisy environment clearly outperforms the point-based search 
algorithms. The performance of point-based methods is affected by a mediocre solution with illusive good fitness, especially in 
complex fitness terrain. Due to less explorative capability, these algorithms waste significant computational resources in searching 
in the local neighborhoods of such misleading solutions. Contrarily, the inherent exploration capability and evolutionary dynamic 
of population-based methods help to identify the promising area near the global optima, even when noise is a predominant factor.  

The effect of population sizing on the efficiency of (1, λ)-ES to overcome the noise infiltration is discussed in [ ]. The 

conventional mutation strategy of (1, λ)-ES in a D-dimensional search space is described by 

Y X Z                                           (76) 

where X is the parent trial solution, Y is the resulting offspring solution and Z is the mutation vector. Considering isotropic 

normal mutation scheme, the components of Z are normally distributed with mean 0 and variance s
2
. The standard deviation s of 

the components of Z are referred to as the mutation strength. The offspring Y replaces the respective parent X if is better than X in 
terms of fitness. 

In the noisy fitness landscape, the measured fitness of X , is represented as 

( ) ( )noisyf X f X          (77) 

where the injected noise η is assumed normally distributed noise with mean 0 and variance
2
 , often referred to as the noise 

strength. Let Rx and Ry be the respective distances of X and Y from the true global optimum 
ˆ

X in a D-dimensional spherical 
objective surface. The progress rate φ is then defined as  

( )x yE R R   .         (78) 

Further, it is shown in [7], [9], [11] that the mutation vector Z can be decomposed into two vector components 

i) 1{ ,0,...,0}AZ z parallel to
ˆ

X X , and ii) 2{0, ,..., }B DZ z z perpendicular to the plane of AZ , as shown in Fig. 10. It is evident 

from Fig. 10 that 



22 2
1( )y x BR R z Z   .                   (79) 

 

Fig. 10. Decomposition of the mutation vector into two perpendicular components 

As the components of Z follow zero mean normal distribution with variance s
2
, (79) can be approximated by 

2 2 2
12y x xR R R z Ds         (80) 

for D→∞. The normalized progress rate is then obtained by 
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          (81) 

where c1,λ is the progress coefficient. The normalized mutation and noise strengths are respectively given by [28] 

ˆ ˆ  and  
( )x x

x

D D
s s

R Rdf X

dR





  .               (82) 

Based on the evolutionary progress principle [21] and from (81), it is apparent that the effective evolutionary progress is a 
function of two opposing forces, 

Evolutionary Gain= 1,
2

1
ˆ

ˆ ˆ1 ( )

c s

s




      (83) 

and    Evolutionary Loss=

2ˆ

2

s
.        (84) 

The evolutionary loss part is thus independent of the normalized noise strength 
2ˆ . To obtain an overall evolutionary progress 

with constant 
2ˆ  and ŝ , the evolutionary gain part needs  to be effectively enhanced by increasing the progress coefficient c1,λ. It 

is noteworthy that c1,λ is a function of the offspring population size λ, given by 

1, ~ 2lnc   .       (85) 

It indirectly implies that larger the population size λ, higher is the value of c1,λ and also the evolutionary gain part, leading to a 
net effective evolutionary progress towards the true global optimum in the noisy fitness landscape.  

Moreover, it is revealed in [10] that a significantly large value is obtained for the net evolutionary progress in noisy 
environment in case of (μ, λ)-ES by increasing the parent population size μ. It is due to the functional dependence of cμ,λ on the 

population variance δ=D
2/s2

 and the noise level ϑ=σε/s, represented by 

1,0
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       (86) 

Rx 

Ry 

ˆ
X  

X  

Y  

Z  

BZ  

AZ  



Here, 0,1
,e  is an instance of the general progress coefficients [13]. For (1, λ)-ES, μ=1 and hence δ=0. It is also pointed out in 

[13] that the effective progress gain of (μ, λ)-ES is almost tripled than that of (1, λ)-ES for a given value of λ and fixed noise level 
ϑ. For example, c1,100= 0.31 while c22,100=0.8 for λ=100 and ϑ=8. 

The effect of resampling reveals to be less efficient in handling noise as compared to large population size in [33]. The restart 

mechanism, realized with the adapted maximum-likelihood Gaussian model of estimation-of-distributed algorithm (EDA) [120], 

[147] increases the population size. This enables the algorithm to achieve significant robustness against noise in high-dimensional 

search space. In [190], the population size is dynamically adapted during the run-time of a multi-objective EA based on the 

characteristics of the objective surface and the desired population diversity. 

The beneficial effect of population sizing over sampling strategy is also studied in [74], [82]. Let each trial solution X is 

assigned with a sample size n, resulting in the mean fitness estimate ( )f X  and the fitness variance ( ( ))f X . It is shown in [74] 

that the random variable S, resulting from averaging the mean fitness estimates of r randomly selected trial solution (or structures) 
from a hyper-plane H, has a mean μS and variance σS

2
, given by 

( )s j
H

f X          (87) 

and 
2 2 21 1

( ( ))s j
H

f X
r rn

          (88) 

where 
2 2

( )   and  ( ) ( )j j j s
H

X X f X           (89) 

Evidently, the total number of samples used to determine the performance of the hyper-plane H is r×n. It is apparent from (88) 
that for a fixed value of r×n, the performance of the hyper-plane can be enhanced by reducing n and increasing r, which is 
proportional to the population size NP. The effect of sampling in modulating σS

2
 is identified by considering r constant, giving 

2
2 ( ( ))

1 n j
s H

f X

n r n

 
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 
        (90) 

where
2

2 ( ( ))
( ( ))n

f X
f X

n


  .        (91)  

The expression (90) indicates that with an increase in the sample size n per trial solution, the performance estimate of the hyper-
plane is increased only by a factor of 1/r with respect to the average accuracy of the individual trial solutions in the hyper-plane.  

An analysis based on the trade-off between the sample size and the population size is also undertaken in [74] by setting the total 
time taken by a genetic algorithm as 

( )T n G NP           (92) 

with n×NP as constant. Here G represents the number of evolutionary generations, α denotes the computational cost per trial 
solution (allocated by genetic algorithm) and β symbolizes the computational cost incurred by evaluating each fitness sample of a 
trial solution. In the present context, it is evident that the number of generations G that can be reached within a constant time T 
decreases with an increase in the population size NP, leading to the faster convergence. A case study in an image processing 
application also substantiates that the implicit averaging occasionally outperforms the explicit averaging to improve the 
performance of an EA in presence of noise. 

Although the implicit averaging strategy increases the population diversity (by effectively exploring the entire search space 
using a large population) and hence increases the robustness against noise, it suffers from three shortcomings. First, it extensively 
increases the computational overhead by evaluating the objective function values of all members of a large population over the 
search landscape. Second, it leads to redundancy by evaluating the same solution over evolutionary generations. Lastly, the 
convergence of an EA utilizing implicit averaging also significantly depends on the selection process. If the selection operation is 
deceived by noise, it will reduce the selection pressure and deteriorates the performance of the algorithm [17]. 

V. IMPROVED EVOLUTIONARY SEARCH STRATEGIES FOR NOISY OPTIMIZATION 

There exists extensive literature on efficiently guiding the evolutionary search towards optimal region in the noise-induced 

fitness landscape. Two major challenges for devising noise-tolerant evolutionary search strategies include i) efficiently examining 

the local neighborhood of a trial solution using robust exploitation operations, and ii) capability to explore the search space to avoid 



premature convergence [107]. The theoretical aspects and comparative analysis of a few evolutionary strategies in noisy 

environment are summarized in [6], [29], [95]. We present some eminent robust search dynamics proposed in the literature to 

rescue the population members from the illusory consequences of noise in the fitness landscape [18], [19].    

A. Robust Features of Multi-objective Evolutionary Algorithm 

Inspired by the role of the momentum term in back-propagation in neural networks, Goh and Tan [77], [78], [79] adopted an 
experiential-learning-directed perturbation (ELDP) strategy to govern the candidate movement toward the direction of fitness 
improvement on the basis of the information acquired from the last few generations for faster convergence. ELDP strategy differs 
from conventional crossover mechanism in two aspects, including i) the ordered change in the trial solution (or chromosome) 
instead of being random and ii) the variation being performed either in genotype or phenotype space. Let the decision vector be 

represented by  and   in the genotype and the phenotype spaces respectively while G denoting the evolutionary generation 

index. According to the ELDP strategy, the j-th decision variable (of the trial solution) in the phenotype is modified by 

( ) ( ) ( 1)j j jG G G                                (93) 

where Δ and   respectively signify the changes incurred in the phenotype space of the given trial solution through genetic 
operators (such as crossover) in the current generation and over prior generations (considering the effect of momentum). α 
represents the learning rate. Apparently, the variation is increased (or decreased) in the direction of possible changes in the 

phenotype space, if ( )j G and ( 1)j G  are same (or opposite) in polarity, particularly in the earlier (or convergence) phase to 

perform exploration (or local fine tuning) efficiently. Accordingly, the new phenotype representation of the trial solution is 
obtained by 

min max
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          (94) 

Here, BF(.) represents the bit flip-flop mutation for the j-th decision variable. Limiting the extent of directed perturbation by the 
bounds [Δ

min
, Δ

max
], the strategy simultaneously ensures exploration in new directions in the search space, induced by bit flip-flop 

operator. It is especially beneficial to get rid of any possible outlier or to expedite the shortly stalled evolutionary search process. 
Hence, the objective of ELDP is two folds, i) controlling the directed perturbation in the phenotype space and ii) enhancing the 
population diversity by bit flip-flop mutation in genotype space.  

Moreover, the trade-off between the explorative and exploitative capabilities of the MOO here are balanced by the proposed 
gene adaptation selection strategy (GASS). It is concerned with modulating the population diversity to prevent the members from i) 
premature convergence and ii) participating in a completely random search in noisy environment. The convergence model of 
GASS re-defines the search space by increasing the search range to prevent premature convergence. The divergence model, on the 
other hand, decreases the possibility of random change in the decision variables by reducing the search range. Evidently, 
convergence model is preferred in the earlier exploration phase while prioritizing the divergence model when the archive has 
reached close to its full capacity. Finally a possibility and necessity measure induced possibilistic archiving method is used to 
resolve the uncertainty in including a solution in the non-dominated set.  

B. Mutation Strength 

Coined by Rechenberg [163], significant focuses are made by researchers on adapting the mutation strength of an EA [8]. The 
effect of rescaled mutation of (1, λ)-ES in a noisy sphere objective surface is studied in [23]. The normalized evolutionary progress 

rate ̂ , comprising two components: evolutionary gain and evolutionary loss, has already been produced in (81) for a traditional (1, 

λ)-ES.  

If the normalized noise strength 
2ˆ is constant, the evolutionary gain part can be increased by two alternative approaches. The 

first approach deals with increasing the offspring population size λ, as the progress coefficient c1,λ~ (2lnλ)
1/2

. The second alternative 

aims at reducing noise strength 
2ˆ by resampling each individual. However, both the approaches invariably increase the 

computational complexity, associated with fitness evaluations.  

Motivated by this observation, an interesting strategy is proposed in [23] to reduce the evolutionary loss part by rescaling the 
mutation strategy, as given by 

1
,    >1Y X Z k

k
                                      (95) 



with X , Y and Z symbolizing the parent, offspring and mutation vectors respectively. 

Due to the rescaled mutation with scale factor k, the normalized mutation strength ŝ is also reduced by a factor of k. If ˆ ŝ  , 

the evolutionary gain part is a linear function of ŝ while the evolutionary loss part is a quadratic function of ŝ . Hence rescaling 

mutation with the scale factor k, reduces the loss part more than the gain part, leading to a net effective evolutionary progress. 
Under rescaling operation, the normalized progress rate is reformulated as 
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                          (96) 

In [12], the mutation strength of (μ/μ, λ)-ES is adapted with the cumulated progress vector, which holds a record of the past 
steps taken by the evolutionary strategy. It is observed that the adapted mutation strength becomes too large (or small) in the 
presence (or absence) of noise in the fitness landscape. 

The influential effect of mutation strategy in bio-geography based optimization (BBO) [180], [181] is studied in [121] for 
improving the probability of identifying true global optima in a noisy objective surface. The Markov-chain formulation of the 
migration probability is used to indicate that the probability of transition of a trial solution to the global optimum gradually 
deteriorates with its increasing (noise-driven) fitness deviation from the true value. This inefficacy of migration scheme to handle 
the jeopardizing effect of noise, however, can be alleviated by mutation strategy with moderately high mutation probability. 

C. Data Mining Approach 

In [51], a Bayesian frequent data mining [76] induced single-point crossover is applied in noisy multi-objective evolutionary 
algorithm. It provides a direct search strategy to assist in the discovery of the optimal regions in the objective surfaces. It also fine-
tunes the local search in the identified potential zone. To accomplish the data mining driven directed search, first the ranges of the 
objectives and that of each decision variable are divided into a pre-specified number of intervals. Next for each individual, the 
Bayesian conditional probability is calculated which captures the probability that the given individual is non-dominated given that 
its decision variable belongs to a specific interval. This is repeated for all decision variables in a D-dimensional search space. This 
Bayesian conditional probability is then utilized to identify the possible range of each decision variable, which is presumed to give 
a non-dominated solution. These D orthotopes (each for one decision variable) now help in identifying the optimal region in the 

multiple fitness landscapes, denoted by R
opt

. A R
opt

 is uniquely identified by its D-dimensional geometric centre ( )
opt

C G . It is 

mention worthy that R
opt

 varies over evolutionary generations. It may happen that R
opt

 is incorrectly detected in the presence of 
noise or it may be far away from the true global optima. To hinder the erratic movement of R

opt
 in the parameter space under the 

influence of contaminating noise, R
opt

 of a specific generation G is combined with R
opt

 of previous generations using a moving 
average formulation. This new optimal region in the objective surfaces is symbolized by R

opt,MA
. It is obtained by setting 

( 1) ( 1) ( )
( )

MA opt
MA G C G C G

C G
G

   
      (97) 

Here, ( )
MA

C G and ( )
opt

C G respectively represent the geometric centers of R
opt,MA

(G) and R
opt

(G) (obtained by D orthotopes 

of current generation G without considering the effects from previous generations). The directed search mechanism now makes a 

trial solution ( )X G  biased towards the potential zones in the objective surfaces by setting 

( 1) ( ) ( ( ) ( ))
MA

X G X G C G X G          (98) 

The local confinement of search process in the promising zones is counterbalanced by the extended exploration phase of the 
algorithm to ensure population diversity. 

D. Memetic Approach 

The uncertainty handling policy in [132], realized with differential evolution (DE) [59], [151], [153], [187] in multimodal high-
dimensional search space, encompasses three main steps, including i) controlled randomization of parameters to enhance 
robustness of DE against noise, ii) scale factor local search for generation of promising offspring vectors and iii) a statistical 
comparison for judicious selection of trial solutions over generations. The optimization proficiency of DE is determined by its 
efficacy of generating potential trial solutions using evolutionary dynamics, like mutation and crossover. The performance of DE 
relies on the appropriate settings of the control parameters, including the scale factor, F and the crossover ratio, CR. The 
deterministic behavior of traditional DE, induced by constant values of control parameters, is less competent to handle uncertainties 
due to presence of noise in the multimodal fitness landscape. Contrarily, a completely randomized update of the control parameters 
may result in a haphazard movement of trial solutions, slowing down the algorithmic convergence. To circumvent the problem, a 



controlled randomization of control parameters [40] is utilized here to ensure a balance between explorative and exploitative 
requirements.  

However, the scale factor F
best

, used for generation of an offspring corresponding to the best parent solution
best

X , can be 
alternatively identified by local search mechanisms, including golden selection search (GSS) [103] and hill climbing (HC) [166]. 
These strategies help to select the optimal value of F

best
 by searching locally in the prescribed bound of the scale factor such that the 

search direction, indicated by 1 2 3( )
best

r r rX F X X   provides the best fitness of an offspring solution for a given set of X , 1rX , 

2rX and 3rX . The best trial solution
best

X undergoes through the mutation and crossover phases with control parameters being 

determined using GSS or HC or controlled randomization based on the respective probabilities of pg, ph and (1− pg− ph). The local 
search strategies, however, are not applied for generation of offspring vectors corresponding to all parent solutions apart from 

best
X .  

E. Adaptive Walk 

The behavior of adaptive walk in presence of noise is studied in [112]. The agents (or trial solutions) remain successful in 
identifying the local basins of attraction successfully during noiseless walk. Little presence of noise, however, is revealed beneficial 
for escaping the local optima during the adaptive walk of trial solutions. It is also exposed that, in presence of noise, constant or 
exponentially decreasing with fitness, the noisy adaptive walks first help the agents to wander through the fitness landscape until 
they discover a specific point in the objective surface with relatively high fitness, referred to as attractor. They are thus clustered 
around the attractor. Eventually they make transition from random walk to hill climbing the fitness landscape to reach the local 
peaks (for maximization problem). The rambling movement of agents is widespread in the objective surface with increasing noise 
variance. 

F. Chaotic Jump 

In [124], a chaotic jump (CJ) strategy is introduced to help the trial solutions in escaping local optima and false basins of 
attraction in the noisy fitness landscape. If a trial solution is obtained with no fitness improvement for a specific duration, called 
maximum_stagnation_inyerval (MSI), the solution jumps towards a new position in the parameter space. The amount of chaotic 
jump is determined by the chaotic sequence following the chaotic logistic map [67]. The strategy has been realized with four 
variants of particle swarm optimization (PSO), including global best PSO [53], local best PSO with ring topology [4], fully 
informed PSO and bare-bone PSO (BBPSO) [102]. If the current position of a particle in PSO remains unsuccessful in replacing its 
respective personal best position (p

best
) for a period greater than MSI, the chaotic jump is performed by the particle. It thus provides 

an explorative capability to handle noise. Among the four comparative variants, BBPSO-CJ is shown to outperform other 
competitors in the noisy environment due to its efficiency in sampling the search space according to a normal distribution. 

G. Local Model-based Search 

In [45], the noise in evolutionary multi-objective optimization is dealt with by dividing the entire D-dimensional search space 
into S (a pre-specified number) spheres. Each sphere is assigned with a pair of centroid and radius, which are adapted over 
evolutionary generations. All the spheres together define the local models of the entire system in D-dimensional parameter space. 

The initial radius (at evolutionary generation G=0) ri(G=0)=r of each sphere is determined by satisfying Dr R S for i=[1, S]. 

Here R is the smallest possible radius of a sphere covering the entire D-dimensional search space, given by 

 
2

max min
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2

D

j j

j

R x x



        (99) 

where xj
min

 and xj
max

 represent the minimum and maximum bound in the j-th dimension for j=[1, D]. To ensure the exploration in 
earlier evolutionary phase, the centroids of the spheres are determined such that the initialized spheres are non-overlapping. Let 

( )iC G be the D-dimensional centroid of the i-th sphere at generation G 

(0) (0) 2   for , [1, ].i jC C r i j S        (100) 

A number of candidate solutions are then initialized in each sphere, which subsequently undergoes one evolution of the 
algorithm. After that, the non-dominated trial solutions in each sphere are identified. The centroids of the spheres are then updated 

based on the location information of their non-dominated members. The local best centroid ( )
lb
iC G of the i-th sphere is determined 

by averaging the position of its non-dominated solutions. In other words, 
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where mi is the number of non-dominated solutions in the i-th sphere. Here ,i jX denotes the j-th non-dominated solution belonging 

to the i-th sphere. The centroid of the archive is considered as the global best centroid, symbolized by ( )
gb
iC G . The new centroids 

of the spheres are next obtained by following the traditional PSO dynamics. 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))
lb gb

i i i i iiv G v G C C G C G C C G C G         
  

    (102) 

( 1) ( ) ( 1)i i iC G C G v G                              (103) 

Here ( )iv G is the velocity of the i-th centroid, which is initialized with (0)iv =0. Hence the overall direction of improvement, 

given by 
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
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eventually guide the population members (within the local spherical models) towards the global optima. The composite opinion of 
all spheres in the evaluation of the net direction of improvement is expected to nullify the deceptive effect of noise and thus helps 
to discover quality solutions over evolutionary generations. 

Apart from the above-mentioned approaches of noise handling using evolutionary search dynamics, the works proposed in [20], 
[72], [90], [105], [122], [152], [183] need special mentioning. 

VI. SELECTION IN NOISY OPTIMIZATION 

In noisy evolutionary optimization problem, the robustness of selection operation against noise [130] is influenced by two 

important factors, including i) the judicious selection of trial solutions for being resampled to reduce the noise-induced 

uncertainty, and ii) the promotion of truly quality solutions over evolutionary generations [69], [115]. The first category presumes 

that the information content of a quality solution will effectively guide the evolutionary search over evolutionary generations in 

presence of uncertainty. The second category of selection process is concerned with identifying the better solution form a pair (for 

single objective optimization) or a non-dominated pool (in case of multi-objective optimization) of solutions to pass onto the next 

generation. Researchers are taking keen interest to develop robust selection strategies to enhance the reliability in selecting 

quality solutions surmounting the jeopardizing effect of noise. Some well-known selection strategies in presence of noise are 

presented next. 

A. Kalman Extension of Genetic Algorithm 

In [188], a Kalman-extended genetic algorithm is proposed which utilizes a specified fraction of the maximum number of 

evolutionary generations to generate new offsprings, while devoting the remaining evolutionary cycles to the re-evaluation of an 

existing population member. The devised mechanism aims at identifying the population member to be selected for re-evaluation. 

The main objective of the selection criterion is not to waste significant computational time by re-evaluating trial solutions with 

poor fitness estimate, or with very low uncertainty. Useful knowledge about the effect of noise in the promising zones of the 

fitness landscape can be effectively captured by the re-evaluations of quality solutions with more uncertainty in their fitness 

estimates. The strategy thus selects an existing candidate with the highest noise-induced uncertainty from the set of members 

having fitness greater than a threshold (for maximization problem). The threshold is set to the difference between the population 

mean fitness and the standard deviation of the population members’ fitness estimates. The noise introducing uncertainty in fitness 

estimates of trial solutions here is handled as observational noise of Kalman formulation, which is eventually reduced over 

generations.  

B. Uncertainty Quantification and Treatment for Online Optimization 

A novel strategy is proposed in [86], [108] for handling noise-induced uncertainty in evolutionary optimization algorithms 
which employ rank-based selection. The proposed strategy is realized with covariance matrix adaptation-evolutionary strategy 
(CMA-ES) and named as uncertainty handling (UH) CMA-ES. It is then applied for the online optimization of feedback controllers 
in a combustor test rig. The proposed methodology is partitioned into two phases. The first phase deals with the quantification of 
uncertainty. Here a randomly selected set of solutions are first re-evaluated. The re-evaluation may result in the change in the 



ranking of the population members. The measured rank changes are then use for capturing the uncertainty in the current generation 
population. The next phase, called uncertainty treatment, is concerned with following two aspects. 

1. It increases (or decreases) the evaluation/measuring time of the performance of the controller based on a larger (or smaller) 
average estimate of uncertainty, as quantified in the previous phase. 

2. It increases the population variance to i) enhance signal-to-noise ratio (SNR), ii) help trial solutions to escape local optima with 
low SNR and iii) prevent premature convergence of CMA-ES and assist in exploring the search space.  

C. Rolling Tide Selection 

In [71], a rolling tide characteristic is introduced into an elitist multi-objective optimization to avoid deception by noise while 
selecting optimal solutions and identifying the solution for resampling. Each population member of the algorithm is assigned with a 
single-track dominator from trial solutions of the non-dominated elite archive A. Initially, all the objectives of each population 

member are evaluated only for once. Whenever a new offspring solution X is created, it is inserted into A if it is not dominated by 

any member of A. The members of A dominated by X are excluded from A and are put into the dominated pool with X , recorded 

as their single track dominator. Otherwise, a solution from A, which dominates X , is referred to as the single-track dominator of 

X . After updating the archive, the trial solution X  is identified from A with the minimum number of re-evaluations of objective 

functions. The set of solutions ( )dom X  , assigned with X   as their single-track dominator, is also extracted from the dominated 

pool. X  is then sampled for one more time. The additional resampling of X  may change its dominance relationship with 

members of ( )dom X  . If X  does not further dominate members of ( )dom X  , X  is removed from A and its single track 

dominator is identified from ( )A dom X  . Moreover, the strategy also focuses either on adaptively increasing the rate of 

resampling if the elite archive gets stalled (or oscillatory due to few resampling), or the strategy concentrates on evaluations of new 
offsprings if the archive is progressing with evolutionary generations respectively. 

D. Dominance Dependent Lifetime 

In [42], three noise-tolerant extensions are incorporated in traditional multi-objective optimization to solve noisy combustion 
process. First, each population member is assigned with a dominance-dependant lifetime, which varies inversely with the number 
of solutions it dominates. Thus, the strategy defends the overall population against the impact of the misleading fitness of unreliable 
solutions.  

 

Fig. 11. Transformation of lifetime of a solution based on the fraction of entire population it dominates 

Conversely, the survival of quality solutions is ensured by the second extension. It is concerned with reevaluating the archived 
solutions with expired lifetime and adding them to the current population. While the key role of dominance dependent lifetime is to 
get rid of outliers with deceptive good fitness, the re-evaluations of quality solutions with expired lifetime (i.e., with a great 
potential to dominate other contenders) may help them to re-enter the archive. Evidently, a true quality solution always returns 
good fitness after re-evaluations but it is unexpected that an outlier, previously assessed as a good member, will again possess the 
good fitness estimate. Hence, the re-evaluation assists in preserving quality candidates in the archive while eradicating the outliers. 
Once the true noisy solutions are removed from the archive, a large fraction of population, previously dominated by the noisy ones 
(or outliers), become eventually non-dominated. However, this set of solutions previously was not accommodated in the archive 
due to the presence of their illusively dominating noisy solutions (or outliers). This may lead to the loss of information in noisy 
environments. Finally, this loss is hindered by appending all these non-dominated solutions (previously dominated by noisy 
solutions or outliers) with nonexpired lifetime, to the archive.  

E. Selection using Statistical Comparator 

The fitness-based Pareto ranking adopted for placement of the members in the Pareto fronts (during non-dominated sorting of 

multi-objective optimization) may not be always correct due noise infiltration. Let jX and kX be two population members with 
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respective Pareto ranks ( )jR X =1 and ( )kR X >1. Evidently, kX is dominated by jX . To give the relatively worse-looking 

member kX  a chance to occupy the approximate Pareto front along with jX , Goldberg introduced the following strategy [14]. 

The strategy checks whether the difference between the sample means of jX and kX is less than the scaled sum of their 

variances, i.e.,  

2 2( ) - ( ) ( ( ( )) ( ( ))) / 2i j i k i j i kf X f X f X f X           (105) 

where, ( )i jf X denotes the mean value of the samples of i-th objective ( )i jf X for i=[1, N]. α is a scale factor, called neighborhood 

restriction parameter.  

In [154], Goldberg’s method is amended as follows:  

1. First, the mean ( )i jf X  is replaced by expectation ( ( ))i jE f X  of the fitness samples for individual population member for the 

i-th objective with i=[1, N], as it provides a better measure of the statistical fitness than the mean estimate. 

2. The sample size for the two members being different, as in [154], the variance is substituted by the variance divided by sample 
size, using Welch’s t-test criterion [111]. 

Incorporation of above mentioned points, yields a new criterion for testing Pareto co-ranking of two members of the 
population. 
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In [156], the centroidal fitness estimates of individual candidates are compared to satisfy a more viable statistical comparator 
is used in [156], [157]. Here, the Welch criterion is replaced by pooled variance with an aim to capture the uncertainty of Pareto 
ranking of population members more efficiently. It is given by 

, ,( ) ( ) ( , )i c j i c k i j kf X f X PV X X   ,   for i = [1, N]     (107) 

where the pooled variance [1] is given by 
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To keep the slightly worse solutions a chance to enter the Pareto optimal front during the early exploration phase of the 
evolutionary algorithm and restrict their entry gradually, a model is employed to design α that captures the above necessity 
automatically.  

2
[1 exp( )]NC G                          (109) 

where σN
2
 denotes the noise variance. When generation G is a small positive integer, α→C (≈ 10, selected empirically) while for a 

large G (theoretically infinity) α approaches zero.                                                     

A hypothesis test is performed for the competitive selection in [182] in multi-objective evolutionary optimization. A student t-
distribution based statistical significant test is undertaken to identify the truly dominant solution among a pair of contenders. 
However, if the test is inconclusive, the solution with less uncertainty is preferred. Apart from t-test, two additional tests, including 
Wilcoxon and median tests are also performed to select quality neighbors of a trial solution in Tabu Search (TS) [55]. In [58], an 
offspring vector is permitted an entry in the next generation if its fitness is better than the fitness of its respective parent by a 
threshold. The threshold here has been made proportional to the noise variance. The study in [65] addressed the concepts of 
stochastic and significant dominance to effectively discriminate among competing solutions in noisy fitness landscape. Among 
other approaches, considering statistical test based selection of quality solutions, the works proposed in [32], [127], [128], [148], 
[165] need special mentioning. 



F. Probabilistic Dominance 

In a multi-objective optimization problem (where all N objectives are to be jointly minimized), a trial solution jX is said to 

dominate kX , denoted by j kX X , if the following conditions are jointly satisfied. 

1. ( ) ( )i j i kf X f X for i =[1, N].      (110) 

2. ( ) ( )l j l kf X f X for at least one l [1, N].      (111) 

The strict inequality conditions of dominance of jX over kX cannot correctly validate the dominance criteria when ( )i jf X and 

( )i kf X are both contaminated with noise for i=[1, N]. Deterministic dismissal of apparently inferior trial solutions from optimal 

Pareto front can lead to the loss of a potentially good solution in the presence of noise. To overcome this, stochastic dominance 

criteria are adopted in [70], [191], [197], to identify the degree of dominance of jX over kX with a probabilistic estimate. 

In [191], the dominance probability is designed by first evaluating the possible fitness intervals of jX and kX , represented by 

maxmin[ ( ), ( )]j ji if X f X  and maxmin[ ( ), ( )]k ki if X f X for all objectives i=[1, N]. The probability of jX dominating kX is given by 
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where 

min

min min

min max

max min

( )

max min

min( ( ), ( ))

max

max min

0,              if  ( ) ( )

1,              if  ( ) ( )

1
( ( ) ( ))

( ) ( )

( ))

( )) ( ))

i k

i j i k

i j i k

i j i k

f X

i j i k

i j i j y f X f X

i k

i k i k

f X f X

f X f X

dyp f X f X
f X f X

f X y
d

f X f X







 









max max

min min

min( ( ), ( ))

max( ( ), ( ))

,    otherwise

i j i k

i j i k

f X f X

y f X f X

y





















  (113) 

 

The following observations can be made from the above. 

1. ( )j kp X X =0 if min ( )jif X > max ( )kif X for any objective i [1, N]. 

2. ( )j kp X X =1 if max ( )jif X < min ( )kif X for all objectives i=[1, N]. 

3.  ( ) 0,1j kp X X  if  

(a). min ( )jif X < max ( )kif X  for all objectives i=[1, N] and  

(b). max ( )jif X < min ( )kif X for at least one objective i [1, N]. 

However, for normal distribution of 2( ) ~ ( ( ), ( ( )))i j i j i jf X N f X f X , the dominance probability ( ( ) ( ))i j i kp f X f X can 

also be modified by following the approach, proposed in [91]. Instead of considering the fitness intervals, the probabilistic 
estimate here is determined based on the effective fitness estimate (for example, centroid, or expected or average measure of 

fitness samples) and the fitness variances of the competitors jX and kX . 
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An alternative formulation of dominance probability is found in [156]. It is represented as 
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where                                          
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and                                     
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The proposed probabilistic dominance criterion helps us to sustain the optimal Pareto front up to certain degree of confidence. 
The Fermi-Dirac probability distribution above ensures that 

1. For c approaching ∞ and ( ) ( )k ji if X f X for i = [1, N], ( ) 1j kp X X  indicating j kX X . 

2. For c approaching ∞ and ( ) ( )k ji if X f X for i = [1, N], then ( ) 0j kp X X  indicating k jX X . 

3. If ( ) ( )j ki if X f X for i= [1, N], then ( ) 1 4N
j kp X X  indicating the non-dominance relationship between jX and kX . 

G. Probabilistic Truncation of Extended Population 

In a non-dominated sorting induced multi-objective optimization, one crucial factor is to judiciously identify the qualitative 
diverse non-dominated solutions from the same rank population pool to maintain uniform population size. The crowding distance 
metric is most popularly used as a diversity preserving operator in such scenario. The solutions with higher crowding distance are 
preferred from their same ranked candidate pool for promotion to the next generation. The crowding distance based deterministic 
truncation of a Pareto front may lead to sub-optimal Pareto front in presence of stochastic noise in the fitness estimates. To 
alleviate this, the concept of crowding distance-based truncation of extended population is extended by a probabilistic estimate pj, 

which captures the quality of a trial solution jX . Hence, under the composite control of both pj and the crowding distance 

measure ( )jCD X , promotion of quality and diverse solutions from the same rank candidate pool is supposed to be less misled by 

noise. 

In [156], pj is influenced by dominance probability. The probability that at least one population member is dominated by jX is 

given by  
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with |P| denotes the size of the combined population. Here, it is apparent that less the probability of jX  dominated by other 

population members, better is its quality. The dominance probability has already been discussed. 

 In [155], pj is defined as the probability of non-occurrence of rare samples of ( )i jf X for i=[1, N]. It thus provides a measure 

of the degree of reliability on the samples of ( )i jf X , as follows: 
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is the quartile skewness that provides a robust measure of the degree of asymmetry of the distribution of fitness samples of 

( )i jf X  with respect to the effective fitness estimate value ( )i jf X  for i= [1, N]. The rare occurrence of fitness samples on the 

left (or right) tail of fitness sample distribution is indicated by γi,j approaching –1 (or +1). These intermittent samples, far away 

from ( )i jf X , are supposed to be infected by noise. Contrarily, if ( )i jf X  is less affected by noise, γi,j ≈ 0, implying that the 

fitness samples are close to ( )i jf X . Thus a smaller value of | γi,j | for i=[1, N] (or a higher value of pj) guarantees the close 

proximity of the measured fitness samples (probably less noisy) to the effective fitness estimate ( )i jf X  in the sample space.  

Once the quality of a trial solution jX  is captured by pj, its diversity measure is modeled by its normalized crowding distance, 

denoted by  
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where jX and kX lie in the same Pareto front. Now, treating ( )jCD X like probability and presuming that pj and ( )jCD X are 

independent, the selection probability of jX for the next generation as        

   ( ).j j jps p CD X                            (125)                                   

A higher value for either pj or ( )jCD X or both increases the probability of selecting jX from the same rank candidate pool 

during the truncation of extended population. 

H. Likelihood Correction 

The potential of restricted Boltzmann machine (RBM)-based EDA in solving noisy optimization problem is studied in [172]. 

The marginal probability distribution of decision variables are obtained by training RBM using constructive divergence method. 

However, the so far developed probabilistic model of RBM fails to capture the real distribution of decision variables of the best 

solution. This problem is circumvented by applying a likelihood correction. The proposed correction strategy is based on the 

supposition that the close proximity between the RBM-predicted and the true marginal probability distributions of decision 

variables reduces the probability of erroneous selection of respective solutions. Moreover, the explorative capability of REDA is 

enhanced by hybridizing it with PSO. 

VII. BENCHMARK PROBLEMS AND PERFORMANCE METRICS 

The most exigent issue in validating the performance of an optimization algorithm is to identify the right benchmark functions 
with diverse characteristics, such as multimodality, deception, and isolation, to resemble complicated real world problems. The 
most well known benchmark problems for noisy optimization are recommended in GECCO’2010, referred to as BBOB 
benchmark suite [73]. Among the test suite of 30 benchmark functions, six functions (f101−f106) are affected with moderate 
noise, fifteen (f107−f121) with severe noise and the rest (f122−f130) are highly multi-modal functions with severe noise. Three 
different noise models are used in the benchmark suite, including the Gaussian, the uniform, and the Cauchy noise models. 
Among these three models, the first two represent the multiplicative models, while the third one is devised as an additive noise 
model. The noise models are developed assuming positive objective function values in all circumstances. The definitions of the 
noise models are reproduced below for the sake of completeness of the paper.  

(i) Gaussian noise model: It is defined as 

_ ( ) ( ) exp( (0,1))noisy Gf X f X   N     (126) 

for a trial solution X . Here the contamination level of noise is controlled by β  [0.01, 1]. 



(ii) Uniform noise model: It is defined as 
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where U(0, 1) represents a random number, uniformly distributed in (0, 1). The constant parameters α and β control the 

jeopardizing strength of noise. In a D-dimensional search space, α is set as β×(0.49+1/D) where β=0.01 and β=1 for 
moderate and severe noise respectively.  is a positive constant, as small as 10

−99
. 

(iii) Cauchy noise model: It is defined as 
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where α [0.01, 1] governs the noise strength and p [0.05, 0.2] represents the frequency of noise disturbance. The most 
challenging issue to handle such noise is to identify and suitably treat the large outliers, originating from a continuous 
distribution. 

To compare the relative merits of different noisy EAs to minimize the benchmark functions of the BBOB test suite, expected 
run-time (ERT) is considered as the most appropriate performance metric. ERT of an EA is defined as the expected number of 
objective function evaluations to achieve a target value of a benchmark function for the first time. It is mathematically given as 

1 s
S US

s

p
ERT RT RT

p


        (129) 

where the run-times RTS and RTUS respectively symbolize the average number of objective function evaluations for successful 
and unsuccessful runs of an algorithm. First, an EA is run on each benchmark function of BBOB framework and is terminated 
either on achieving the target objective function value or reaching the maximum number of objective function evaluations (10

4
×D 

for D-dimensional problem), whichever occurs earlier. Out of such N runs of a noisy EA on each BBOB benchmark problem, the 
runs, where the EA remains successful in achieving the target value, are referred to as successful runs. The non-zero success rate 
ps represents the fraction of successful runs of the corresponding EA. 

The ERT of an EA is obtained from the run-times of its N optimization runs on a BBOB benchmark problem. The run-times 
corresponding to these N optimization runs form a “single data sample set”. Bootstrapping is additionally used as a tool in BBOB 
framework to effectively capture the true empirical cumulative distribution function (ECDF) of ERT. To obtain the bootstrapped 
distribution of ERT, a large number (for example, 100) of such “single data sample set”s is resampled. Each “single data sample 
set” here is constructed by repeatedly drawing single optimization runs (of the EA on each benchmark function) with replacement 
until a successful run is drawn. The run-time in each “single data sample set” (in the bootstrapped distribution of ERT) is 
computed as the sum of the number of function evaluations of its constituent optimization runs. The ECDF of the ERT of a noisy 
EA is pictorially represented in Fig. 12. 
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Fig. 12. ECDF of the ERT (number of function evaluations, divided by search space dimension D) of a noisy evolutionary optimization algorithm with target 
objective function value= f opt + Δf  with f opt as the optimum objective function value and Δf = 10k, where k = 1; −1; −4; −8 (the first value in the legend) while 

the second value in the legend indicating the number of functions (out of 30) that were solved in at least one run 
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In [154], the authors have validated the efficacy of their proposed noisy multi-objective optimization algorithm on the noisy 
versions of the CEC’2009 benchmark suite [201]. Each of the 23 benchmark functions of the test suite is contaminated with 
additive noise samples taken from the Gaussian, the Poisson and the random distribution, as tabulated in Table-3. 

TABLE 3: PROBABILITY DISTRIBUTION FUNCTIONS OF INJECTED NOISE η 

Noise Model PDF Distribution Properties Method 

Gaussian   2 2exp ( ) 2 2       mean= µ, variance= σ2 Box-Muller [34] 

Poisson exp( ) !

    mean= λ, variance=λ Knuth [106] 

Random Random  Linear congruential pseudo random number generator [31] 

 

The following performance metrics are used for comparative analysis of the performances of the state-of-art noisy multi-
objective optimization (MOO) algorithms.  

(a) Inverted generational distance (IGD): The IGD between an approximate Pareto front A (obtained by an MOO algorithm) and 

the true optimal Pareto front P of an MOO benchmark problem (in objective space) is defined as 
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with d(v, A) denoting the minimum Euclidean distance between z and the points in A, both in the objective space. Lower the IGD 

measure, closer is the approximate Pareto front A to the optimal Pareto front P
*
. 

(b) Spacing (Δ): The metric provides a unique measure of the spread and distribution of the trial solutions in the objective 

surfaces of the MOO problem. The metric is defined as follows: 
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Here M represents the number of non-dominated trial solutions found by the MOO algorithm with jX  and kX  as two non-

dominated members of the approximate Pareto front A. An ideal value of zero for Δ signifies all the members of A are 

equidistantly spaced.  

(c) Error ratio (ER): This metric is defined as  
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An ideal value of zero for ER indicates that all the non-dominated members of A also belong to the optimal Pareto front P*.  

(d) Hypervolume ratio (HVR): The size of the objective spaces covered by a set S of non-dominated solutions (of an MOO 

problem) is referred to as its hypervolume HV(S). Based on this definition, HVR is defined as follows. 

( )
( ) .

( *)

HV A
HVR A

HV P
         (133) 

Intuitively, HVR(A) achieves its ideal value 1 if the non-dominated members of A (in the objective spaces) are same as the 

members of P*. A focused HVR (F-HVR) metric is also proposed in [177] to assess the convergence speed and diversity of the 

final population obtained by a noisy R-NSGA-II algorithm variant [61].  

(e) Population Diversity: In [176], population diversity is used as a performance metric to validate the performance noisy MOO 

algorithms. It is defined as follows. 
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Here |P| denotes the size of the final population P and CD( X ) represents the crowding distance measure of the trial solution X . 

Intuitively, higher the measure of PD(P), better is the performance of the noisy MOO algorithm to preserve the population 

diversity. 

In [178], three different noise models are considered to contaminate the fitness of population members with the noise samples. 

The amplitude of the noise samples are determined based on the distance ( )g X  [203] of the trial solution X from the optimal 

Pareto front.  The normalized value of ( )g X is given by 
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The three noise models adopted in [178] based on ( )l X are given as follows. 

(i) Logistic-growth noise model: It is defined as 

_ log log( ) ( ) (0, ( ) )noisyf X f X L X   N      (136) 

where, 
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    (137) 

for a trial solution X . Here L
min

 is the minimum noise level close to the optimal Pareto front and σ represents the predefined 
standard deviation of the objective function. As evident from (137) and Fig. 13, the noise level quickly attains its maximum 
value of unity following a logistic-growth function around the threshold value φ. The jeopardizing effect of noise taken 
from the logistic-growth model imposes challenges for the preference-based algorithms that determine the sampling 
requirements based on the distance of the population members from the reference point. 
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Fig. 13. Logistic-growth noise model 

(ii) Trigonometric noise model: It resembles a co-sinusoidal noise landscape as shown in Fig. 14. It is defined as 

_ ( ) ( ) (0, ( ) )noisy trig trigf X f X L X   N     (138) 
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where ρ denotes the number of peaks and α is a constant parameter controlling the width of the peaks. The levels of noise 
samples contaminating the objective function values of the trial solutions residing at different Pareto fronts can be 

L
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log ( )L X  

( )l X  



controlled by varying the phase parameter θ. The most challenging issue to handle such noise lies in dealing with its large 
number of hills and valleys, as shown in Fig. 14.  
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Fig. 14. Trigonometric noise model  

(iii) Delayed trigonometric noise model: It is defined as 

_ _ _( ) ( ) (0, ( ) )noisy delay trig delay trigf X f X L X   N     (140) 

where, 
min

_ ( ) (1 ) sin( ( ) ) 1delay trigL X L l X



         (141) 

where ρ denotes the number of peaks and α is a constant parameter controlling the width of the peaks. The designed noise 
model ensures low level of noise close to the optimal Pareto front. The size of the low-noise area close to the optimal Pareto 
front is determined by the setting of the parameter β. Thus, the noise model imposes the challenges of both the logistic-
growth and the trigonometric models, discussed earlier.  
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Fig. 15. Delayed trigonometric noise model  

VIII. OPEN PROBLEMS AND DISCUSSION 

This section includes a brief discussion on the NOPs. A few promising future research directions are also given in this section.  

A. Discussion 

The infiltration of noise in an evolutionary optimization algorithm can be avoided at five different levels: i) sampling, ii) fitness 
estimation, iii) population sizing, iv) evolutionary search operation and v) selection. At the sampling level, the sample size 
determination is an important issue as it greatly influences the effect of inducing noise at the subsequent steps of the algorithm. At 
the fitness estimation level, the effective fitness of a trial solution is estimated from the noisy samples of the same solution by a 
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suitable aggregation operation on the sample fitness values. The third strategy deals with increasing the population size to reduce 
the impact of noise on selection operation. Apparently, the optimal selection of the sample size per trial solution and the entire 
population size is constrained by the computational complexity of solving a given real world noisy optimization process. Improved 
evolutionary search operators (for example, mutation, and crossover) are concerned with directing the candidate solutions towards 
the truly potential zones in the noise-induced fitness landscape. Lastly, the selection helps filtering of quality solutions from the 
rest. A theoretical insight to the existing literature on noisy evolutionary optimizations reveals that their performances greatly rely 
on the characteristics of the fitness landscape and injected noise. This section unfolds the modalities of the previously mentioned 
five strategies in eliminating the effect of noise infiltration in different objective surfaces as given in Table-4.  

TABLE 4: FAVORABLE CONDITIONS FOR DIFFERENT NOISE HANDLING STRATEGIES  

Strategy Condition Action 

Sample size 
bound 

Population 
size 

Search 
Dimension 

nmin ss= nmax − nmin
 

Large Low Small Small 

Large High Moderate Small 

Small High Large Large 

Small Low Small Moderate 

Fitness 
estimation 

Noise 
Variance 

Fitness 
Landscape 

Fitness estimation policy 

Small Unimodal Averaging 

Small Multimodal 
Expectation (uniform 

partitioning of sample space) 

Large Unimodal 
Expectation (non-uniform 

partitioning of sample space) 

Large Multimodal Centroidal defuzzification 

Parameters of 
evolutionary 

search 
dynamics 

Fitness Landscape Control parameter settings 

Unimodal Fixed parameter values 

Multimodal Online tuning using local search 

Selection 
Criteria 

Fitness Landscape Selection policy 

Unimodal Statistical test based selection 

Multimodal Probabilistic selection 

 

As evident from the existing sampling strategies, a possible trade-off between the computational complexity and the accurate 
inspection of noise contamination can be efficiently balanced by dynamic sampling. The performance of the dynamic strategy, 
however, is dependent on the appropriate settings of minimum sample size (n

min
) and the possible sample size span (ss= n

max 
− 

n
min

). Apparently, for a large population size, the detrimental effect of noise on a population member can be compensated by the 
average behavior of similar members due to inherent search capability of EAs. In such scenario, it is obvious to use a small value 
for both n

min
 and ss. This is particularly effective in a low-dimensional search space, densely populated by candidate solutions. If 

the search space dimension is high, a large population of trial solutions with non-uniform distribution over the wide parameter 
space may not be able to examine precisely the penetration of noise in their fitness measures. This demands a moderate value of 
n

min
. Apparently, a large setting of n

max 
is anticipated to increase the computational burden without significantly enhancing the 

quality of noise elimination. Hence, ss (>0) is kept small. However, for a high-dimensional problem with low population size, the 
population members are sparsely distributed over the parameter space. Hence, a specific trial solution is used to represent a 
relatively large area in the search space. A large value for both n

min
 and ss, under this circumstances is expected to extract the true 

fitness information in the realm (within the search space) of the given trial solution. Contrarily, a small population in a low 
dimensional search space can proficiently capture the local distribution of noise using small sample size per solution.  

Typical aggregation operators used to derive the effective fitness estimate of a trial solution from its fitness samples include 
averaging, expectation and centroidal de-fuzzification. The efficiency of fitness estimators is contingent upon its capability to 
capture the local noise distribution among the fitness samples. In presence of uniform local noise distribution of low variance, 
averaging is usually preferred to reduce the computational complexity. However, the large scale jeopardizing effect of non-uniform 
noise distribution can be competently coped with expectation and centroidal de-fuzzification. The centroidal de-fuzzification 
outperforms the expectation policy (uniform or non-uniform partitioning of the sample space) in modelling the noise-induced 
uncertainty in the occurrence of fitness samples, however, at the cost of additional computational complexity. It is worth 
mentioning that the superiority of the de-fuzzification strategy over the expectation is significantly manifested for multimodal 
fitness landscapes.  

The adverse consequence of noise becomes prominent when injected into multimodal objective surface. Under such 
circumstances, mere applications of the dynamic sampling (with moderately high sampling rate) and the centroidal de-fuzzification 
stratagems fail to precisely locate the true global optimum. A possible solution to the failure of discovering promising area in the 
fitness landscape is to autonomously adapt the control parameters of evolutionary search dynamics by learning the noise-induced 
objective surface characteristics. The online tuning strategy is particularly essential when the amplitude and frequency of noise 



occurrence are high. The constant settings of control parameters may remain successful in avoiding the deceptive effect of noise 
infiltration in unimodal fitness landscape when used along with proficient strategies of sampling and fitness estimation. 

Lastly, the robustness of selection process against noise is one important issue in ensuring the survival of quality solutions over 
generations. Two categories of noise-tolerant selection strategies have gained wide publicity due to their performances: statistical 
test based selection and probabilistic selection. The performance of the statistical test based selection, however, greatly relies on the 
setting of the confidence interval (or the restriction parameters in [154]). Moreover, the competitive sampling policy, when realized 
with the statistical test, augments the computational overhead. Hence, this strategy is presumed to perform efficiently and time-
optimally in unimodal fitness landscape. The probabilistic selection strategy reduces the run-time complexity of the algorithm at 
the cost of reduction in the certainty level of sustaining quality solutions.  

B. Open Problems 

Although there exists quite a few interesting papers on noisy evolutionary optimization, there remains immense scope for future 
researchers in this new domain of research. The following open problems are of great importance to enhance the performance of 
the noisy optimization problems.  

1) Learning based Adaptive Sample size Selection:  Existing noisy evolutionary optimization algorithms primarily consider 

noise variance as a  metric to determine the sample size of a trial solution. For large polulation size, the existing methods of 

sample size selection is acceptable. However, when the populaton size is small (with respect to the search space dimension), it 

becomes difficult to get an approximate idea of the noisy surface from the few population members spread across the surface. 

An alternative apoproach could be to learn the objective surface approximately by evaluating the objective function of the 

population in the local neighborhood. In case the fitness measure in the local neighborhood has a wide variance, the sample size 

of the members falling in the local neighborhood would be high. Any traditional learning algorithms could apparently be used to 

handle the above situation. For instance, a supervised learning algorithm can be trained with local fitness variation as input and 

sample size as output. After the learning is over, the learning system could be used to predict sample size from local fitness 

variance. However, the training-time of supervised learning algorithm being high, the run-time complexity of the noisy 

optimization algorithm may increase significantly. The situation would be similar for unsupervised clustering based sample size 

selection and thus is not suggestive. The other problem that might appear due to learning based sample size selection is repeated 

learning requirement as the surface might be corrupted with time-varying noise. The only solution that could eliminate the last 

issue is the incorporation of reinforcement learning (RL) in sample size selection. 

In RL, we usually store the reward/penalty earned by an agent at distinct system states for a distinct action [138], [200]. In the 

present context, the quantized intervals of the range of fitness variance are used as states and the sample sizes as actions. The 

reward/penalty stored in the grids, indexed by state-action pairs, are representative of the performance of the action at the selected 

state with respect to a fixed goal, here finding optimum fitness. The advantage of this learning paradigm lies in its potential for 

life-long learning in real-time. Naturally, the best action at a given state can be selected using the recent learning instances about 

the objective surface. The open problem here rests on the choice of reward function, state-definition based on the quantization 

procedure and the learning strategy based on the measure of reward/penalty.  

2) Uncertainty Modeling in Effective Fitness Evaluation: The fitness estimate of the trial solutions in noisy optimization 

problem suffers from measurement noise, and thus the true estimate of the fitness from noisy samples requires additional 

processing. The motivation of the additional processing is to eliminate the effect of noise from noisy fitness values. This, in turn, 

is an uncertainty manangement problem, which could be addressed by several well-known techniques, including stochastic, 

fuzzy/rough set based models and Dempster-Shafer formulation. There exist much scope for future research on accurate fitness 

estimation problem in presence of noise. 

3) Dynamic Population Sizing: An alternative approach to handle noisy optimization problem is to vary the population size 

instead of sample size as adopted in the traditional literatuire. There remains open ends on the functional form of population-size 

with (global) noise variance on the landscape. 

4) Adaptation of Evolutionary Search Strategy: To overcome the deception by noise, existing noisy optimization techniques 

consider effective exploration of the search space in the earlier phase of the algorithm, while fine tuning the search in the local 

neighborhood of quality solyutions in the exploitation phase. There exists extensive research openings to autonomously learn the 

control parameters with an aim to select right set of parameters for a set of local population members on the serach landscape. 

5) Improving Selection Strategy: In traditional noisy optimization algorithms stochastic selection is usuallay adopted instead 

of deterministic selection. However, there is a chance to lose the local optima. Local optima being highly probable regions for 

possible global optimum, losing local optima may render a miss of the global optimum. The problem is more severe in noisy 

optimization. There remains broad research opening to preserve the local optima in noisy optimization problem by introducing 

niching strategy [113].  



IX. CONCLUSION  

Evolutionary algorithms have proven significant impact on many real world optimization problems. Noise in engineering/ scientific 
problems acts as a fundamental impediment to furthering research. Evolutionary algorithms that produce promisingly progressive 
outcome in research and practice cannot work in presence of noise on the objective function. This paper provides a thorough 
review to handle optimization in presence of noise on the fitness landscape. Five different strategies have been proposed to search 
optimal solutions on for NOPs. The strategies include sampling, fitness estimation, dynamic population sizing, adaptation of 
evolutionary search strategy and modification of selection strategy. Details of these are given in the respective sections and are not 
reproduced here for page restriction.  

Several researchers have put forward different noise models for their specific noisy optimization problems. Although the 
solutions proposed by them work brilliantly for the suggested noise models, they occasionally do not apply well for different noise 
models. Consequently, there is hardly any universally acceptable algorithm to handle noisy optimization problems in general. This 
motivated researchers to take up hybrid models that can cope up to different noise models.  

There still remain quite a few unattended areas in noisy evolutionary optimization algorithms. A few of these that need special 
attention are included as open problems for future research. One genuinely attractive issue, which has not received enough 
popularity, to the best of these authors’ knowledge, is introducing learning in the optimization algorithm, primarily to learn the 
objective surface for different parametric space. Although any traditional learning strategy could have been incorporated, the 
authors here justified the importance of reinforcement learning over its two main counterparts, supervised and unsupervised 
learning, because of the real-time learning characteristics of the former learning algorithms. Two distinct sub-problems, where 
reinforcement learning could be incorporated include sampling and control parameter adaptation of the evolutionary algorithms. 

Noisy optimization algorithms would serve a remedy for many engineering optimization problems in robotics, material 
processing, control of missiles, autonomous vehicle parking and many others. In robotics, noisy optimization influences sensory 
measurements, which in turn influence the decisions in intelligent planning concerning optimal path, optimal time to reach target 
and/or team cooperation among the robot team-mates. In material processing, noise in sensors induces noise in the decisions and 
thus influences the material processing, which in turn hampers the quality of the finished product. In control application of surface 
to surface missiles, atmospheric storm may appear at any point of time at any arbitrary direction. Controller tuning in presence of 
random noise to eliminate possible path deviation of the missile thus is an important real-time optimization problem. Autonomous 
vehicle parking in presence of sensory noise may cause collision of the vehicles, where noisy evolutionary real-time optimization 
plays an important role. 
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