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Introduction

Since the turn of twenty-first century, half of the population of the world lives in
cities. This is by no means a revolution or a decisive inflexion as it was sometimes
suggested by the media, because the world trend in increasing the share of urban
population (that ratio is technically called the ‘urbanization rate’) has been a con-
tinuous one for at least two centuries. The major significance of crossing the
symbolic 50% threshold is that cities have become the places where the majority of
people will henceforth make their living and invent their ways of life. This has
already been the case for 50 years for the population of the more developed
countries. It is becoming a reality for more and more inhabitants of the world.
Before the end of this century more than three quarters of some nine billion humans
will live in cities. The consequence is that most societal challenges have now to be
confronted and solved within urban environments. Whatever the topic: trans-
portation, pollution, production, consumption, social segregation, poverty, culture,
architecture, and esthetics, it must now be thought of as an urban problem, to be
managed in an urban milieu and solutions have to be adapted to the specific places.

Although cities are obviously part of many problems (climate change, inequality,
etc.), they also represent the only viable solution to such problems (Carter et al.
2015), and they already have started solving them. Indeed, although they were
never coordinated by any dedicated institution in a global and continuous way,
cities have self-organized throughout the course of history into systems of cities.

Because they are connected by multiple networks for exchanging material goods
as well as immaterial information,systems of cities could figure prominently among
the most ingenious invention of human societies. If one would conceive them as an
institution produced intentionally, systems of cities would be thought of as suc-
cessful tools designed for reducing uncertainties of terrestrial environments using
distant resources and multiplying innovation from network interactions. From these
repeated and increased exchanges, the systems of cities have spontaneously gen-
erated significant co-evolution processes between more and more distant cities in
expanding political, trade and cultural networks.

This evolution is not linear and involves many discontinuities in space and time:
unequal urban development is a rule and barriers to trade and new borders have been
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erected many times. Neither was it always a virtuous process since most of it has
occurred in terms of conflicts, predations, conquest, or competition for domination.
Nevertheless their organization in systems can help cities facing the challenges of
this century in terms of supplying goods and well-being for a growing population
whilst preserving natural resources. Their multiple connections in systems of cities
could nowadays be activated for sharing from the bottom up the good practices that
are invented locally every day as well as for disseminating from the top down
incentives or regulations that are decided by intergovernmental institutions.

Part of this activation could be done in a more conscious and scientific way by
using models of urban dynamics. Systems of cities share with other complex
systems intrinsic dynamic properties that were developed over history through
inter-urban interaction. A well-known one is the shape of the statistical distribution
of city sizes, coined as ‘rank-size rule’ by Zipf (1941) or the lognormal distribution
by Gibrat (1931).

This hierarchical structure, its change over time and the dynamics generating it
can be modelled, and we suggest here some new methods and a series of application
cases. The methods are new because they integrate the latest technological power of
distributed computing, allowing for a multiplication of large-scale simulations that
was not possible before. The models are new in that they consider and integrate the
uncertainties of urban evolutions (past, present or future), as well as the uncertainties
of scientific explanations. Considering and modelling the uncertainties of urban
complex dynamics allows to draw a fuzzier picture about urbanization than the one
exposed in the media, but also one that is concerned with evaluating the probability
of different scenarios and the adaptative properties of cities in various contexts.

Our models both encapsulate a major part of the accumulated knowledge from
comparative empirical urban studies and ensure a significant progress in simulation
models aiming at reconstructing urban dynamics by greatly improving their vali-
dation methods. We have tested the ability of these models to simulate past evo-
lution with a growing confidence that they could as well help predicting possible
urban future. That is why we think that our methodology could be used in further
work to design policies for enhancing our territorial intelligence.

Why Model Cities?

Besides the traditional reasons for modelling complex systems: explain, illuminate
core dynamics, bound outcomes to plausible ranges, illuminate core uncertainties,
challenge the robustness of prevailing theory, Expose prevailing wisdom as
incompatible with available data and Reveal the apparently simple (complex) to be
complex (simple))… suggested by Epstein (2008), we see at least four reasons for
developing urban models.

1. Because urban places concentrate the major political, economic and environ-
mental problems, as 80% of the world population will be urban before the end
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of the century. Any piece of knowledge and tools to produce it is then appre-
ciated to try and understand, explain and forecast future changes, identify
challenges and think about problem solving at large scales;

2. Because of our observation that cities never grow in isolation but always
through interaction and co-evolution with other cities, we also know about the
important consequences of these interaction processes on structures and
dynamics that are shared by so many urban systems and be summarized and
hierachized as characteristic stylized facts. Considering cities with their inter-
actions therefore seems to be the right approach but it hampers our ability to
understand the complex consequences of changes with our human brains.
Therefore tractable computer models are necessary for keeping track of
numerous interactions;

3. Since systems of cities are complex systems based on nonlinear interactions,
simulation models are necessary for exploring the capabilities of regulation in an
until now widely self-organized dynamics, especially for building plausible
scenarios of urban evolution (Pumain and Sanders 2013);

4. Because models could then become the right tools for providing insights into
our capacity to shape scenarios for future evolution. The challenge of moni-
toring these systems for better resilience and sustainability could be to imagine a
possible scenario to shift from rivalry and competition to cooperation and cre-
ative emulation in inter-urban interaction.

As a consequence of the complexity of urban dynamics and of the emergency to
face the multiple challenges of our world in terms of ecological and numerical
transitions, efficient and adapted models of urban dynamics are more than ever
needed to explore the possible directions of urban changes. While defining a future
agenda for urban research, Batty (2013) insisted on the role of new technologies as
tools for interpreting and adapting urban changes: “There is little doubt that getting
a grip of what our future cities will be like must be based on the information and
communication technologies and urban analytics that make the greatest use of the
data and models that use these technologies to study the impact of the same
technologies which are changing and transforming the very system of interest that
we are studying. The fact that we use these technologies to explore how these very
same technologies are changing the system we are studying is part of the paradox
that a future cities agenda must grapple with”.

Originality of the Book

The book has an original approach in many ways. First, it provides a broad view
about urbanism, exemplifying cities geographical distribution, hierarchical and
functional differentiation, structural and dynamic features rather than apparent
differences in urban landscapes and morphologies that are usually put forward in
the descriptions of urbanization.
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Second, it uses lessons from the past to explore the future of cities, with respect
to historical contingency and path dependency. We do not rely on equilibrium
theories or on hypotheses about optimal urban organization. On the contrary we
promote an evolutionary perspective for urban systems.

Third, we remain rooted in empirical observations filtered through a comparative
method by dedicating a special care for building standardized data from the
diversity of existing official definitions and statistics in different regions of the
world. A fourth originality of this book is aiming at developing open reproducible
tools for simulation models stemming from the ‘Simpop family’ (Pumain 2012).

And last but not least, an innovative feature is that we develop an integrative
view on digital social science, since the authors are part of a multidisciplinary team
including computer scientists and geographers who worked together on the same
material and with the same tools they built during the 5 years of the GeoDiverCity
project.

Complex Cities and Complex Models

The system we study—cities interacting with one another at national and conti-
nental scales—is complex. A model (or models) can be used to abstract some of the
dynamics and features of the target system, but given that it still allows interactions,
nonlinearities and stochasticity, the model is itself a complex object (Amblard and
Phan 2007). Therefore it can lead to a diversity of possible trajectories originating
from the same simulation starting point.

This property of complex models makes them interesting to represent aspects
of the urban world and to identify a range of possible outcomes, but it also chal-
lenges the kind of knowledge one can draw from the simulation results. A thorough
use of the computer model for explanation, understanding and forecasting thus
needs to include and acknowledge this diversity, uncertainty and contingency (the
observed trajectory is just ‘one of’ the multiple realizations that were possible at
some point).

It is made possible by replicating the experiment in a virtual laboratory,
changing initial conditions and repeating simulations, which is impossible ‘in real
life’. The function of virtual laboratory is therefore a key advantage of simulation
models in urban studies. It is however subject to an uncertainty regarding the
validity of the rules and mechanisms modelled, since a large variety of processes
can result in similar outcomes. This challenge is known as equifinality (von
Bertalanffy 1968), and it is particularly strong in urban modelling at large spatial
and temporal scales, because the data we rely on to characterize the system and
validate micro-behaviour are rather sparse and limited. Equifinality means that a
larger pool of processes to be candidates for the explanation. We think it also
requires urban modellers to integrate this issue all along the evaluation protocol as it
will determine the quality of knowledge to be extracted from the models for urban
prospective and understanding (O’Sullivan 2004; Batty and Torrens 2005).
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Indeed, at the scale of systems of cities, we can observe urbanization patterns via
historical census data (hierarchical organization, spacing, specialization, etc.) but
rarely processes themselves or the actual inter-urban flows. Simulation models
constitute interesting tools to try and ‘replay history’, to see if it corresponds to the
observed patterns, and what other situation could have resulted from the same initial
conditions. However, there are two levels of adequacy assessments (Rossiter et al.
2010) to check:

1. What other mechanisms are able to produce the same outcome (within the
model)

2. Are the processes modelled the ones that happened ‘in real life’?

The first question can be addressed by an extensive inclusion of several theories
through a multi-modelling approach. The second question remains and refers to
broader causality issues in generative explanation (Hedström and Ylikoski 2010;
Elsenbroich 2012). If indeed there is no definite way to identify a causal mechanism
modelled as the cause in systems of cities, generative mechanisms provide a causal
link between interacting entities and macro-patterns. If micro-behaviours are proven
robust by empirical and theoretical evidences, it provides an important comple-
mentary explanation to usual statistical explanations (Byrne 1998; Goldthorpe
2001), from which causal links are missing.

Book Proposition: Exploring Multiple Parsimonious Models

The answer we provide to the challenge of equifinality in urban simulation is
threefold:

1. Parsimony. Given the multiple accounts potentially responsible for the same
urban outcome, we state as a principle to not start with the most complicated and
detailed model, but instead to evaluate the ability of simple mechanisms, and
then to combine them into a more complex model. This way, we can better trace
the complex effects of each mechanism and theoretical hypothesis, and char-
acterize its necessity for the reproduction of a feature within the model.

2. Multiplicity. This principle applies to the causes as well as to the trajectories of
urban evolution. Because of the complexity of urban interactions and because
of their contingencies, we think that a thorough investigation of cities needs to
include multiple accounts of urban growth and interactions (competition and
cooperation for example) as well as to look for the diversity of possible trajectories
of a system could have reach given random processes and small perturbations.

3. Extensive Exploration/Evaluation. The combination of parsimonious modules
into models enables to build a large incremental exploration of models, to
compare their structure, their parameterization and their ability to simulate past
trends as well as diverse (credible) alternatives. Indeed, we think that it is
necessary to take advantage of the full extent of working in a virtual
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(computational) laboratory. We have developed several generic and open tools
and methods to do so. We present at the end of the book the integrated platform
in which they take place and how they can be reused in a large variety of
simulation contexts.

Book Content

The new generation of Simpop models presented in this book, as well as the
approach followed all along their construction and evaluation, has specifically
targeted and tackled the equifinality challenge of (urban) modelling. It is presented
as a progression from solving elementary generative problems to adapting models
for encompassing a variety of urban situations by sharing open tools.

The first chapter presents our empirical knowledge of systems of cities, and ways
of summarizing their regular properties. It builds the ‘system of reference’ upon
which model-building can take place. Indeed, by generalizing processes and
structural properties of empirical case studies in different spatio-temporal contexts,
it specifies the elements that can be forecasted (the total urban growth, the degree of
differentiation of city sizes, the spatial balance of growth, etc.) and ways to do it
(theories of innovation diffusion, of agglomeration economies, of spatial distribu-
tion, etc.). By asking ‘is urban future predictable’, we question the logics of urban
evolution as well as the different levels of uncertainty attached to different aspects
of urban growth and interactions. Identifying the possibility of prediction makes the
task of modelling interesting. Identifying key features of systems of cities provides
a stylized empirical ground to evaluate simulations and study alternative trajecto-
ries. Finally, identifying areas of uncertainty as leading to the processes responsible
for the urban evolution calls for a multi-modelling approach that tackles equifinality
in the virtual laboratory.

The second chapter addresses the first step of the modelling of system of cities. It
presents a parsimonious model of the emergence of cities from a homogenous
settlement system. It aims to answer a very basic question: are we able to identify a
simple set of meaningful mechanisms that reproduces the observed emergence of
cities at the scale of thousands of years? The SimpopLocal model is an answer to
this question and it raises the challenge of calibration, in order to prove that there
exists a set of parameters that are sufficient to model this emergence. It also raises
the challenge of formalizing what a good simulation is in terms of long-term urban
evolution, in order to automate the search for this parameter set (for which there
exists no empirical ways of determination).

The third chapter goes beyond the possibility of finding one way of simulating
the emergence of cities. It presents a new method for assessing parameter sensi-
tivity, by looking at the necessity of each mechanism within a given model
structure. Indeed, despite the diversity of solutions to the calibration challenge, are
some parameters isolated, not interacting with other parameters in the simulated
output? Are they all necessary, besides being sufficient? A new method called
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‘calibration profiling’ was developed to validate not only sufficiency of modelled
mechanisms but also the necessity of theoretical hypotheses that are behind the
construction of the model. It is a progress of social sciences towards the scientific
methods (all things being equal), and it allows to increase the parsimony of urban
models.

The fourth chapter builds on this quest for parsimony, as it presents an incre-
mental model-building approach to simulate empirical systems of cities. Given the
specificity of the system we aim to model, we expect the mechanisms needed to
reproduce the observed trajectory to be multiple and interacting in a complex way.
Therefore, we have built a framework of hypothesis-testing and implemented
modules of mechanisms that we combine and simulate. The combination follows a
path of complexification as well as particularisation from any system of cities to a
specific case study. The quality of each simulation is evaluated with respect to the
populations observed in the corresponding empirical cities. This approach was
developed to model the evolution of Soviet and post-Soviet cities from the 1960s
on. Its strength is to be transferable at a very low cost to any other national system.
A tentative check was performed on Indian cities. We finally show in this chapter
that a theoretical-based modular model allows to evaluate and compare the power
of different hypotheses to explain urban growth at different periods of time and in
different geographical contexts, and therefore suggests a way to account for equi-
finality in urban models.

The fifth chapter corresponds to an innovative way of exploring simulation
models, and especially urban models. It considers a parsimonious structure of
mechanisms and looks for the diversity of possible outcomes that the model can
reach within a reasonable range of parameters. This means that it explores what the
trajectory of a system of cities could have been, if we simulate past trends, or what
it could be in the future, in terms of two or three properties of the system (like its
total population, or the degree of inequality of city sizes). We present the algorithm
developed to maximize the diversity of a model’s output, as well as the kind of
knowledge it leads to in an empirical context. For instance, we analyze the alter-
native pasts of the Soviet system of cities (as modelled within different model
structures) and the corresponding parameters and their meaning. In particular, we
highlight configurations that result in population growth and configurations that
result in population shrinkage, configurations that result in hierarchization or in the
equalization of city sizes for each of the demographic regimes at two periods of
time (Soviet and post-Soviet eras).

In the last chapter, we present the platform that brings together and enables all
the cutting-edge exploration methods in urban simulation. This integrated, inno-
vative and open toolbox for urban modelling is called OpenMOLE.

As an epilogue, we present what could be a world atlas of urban models for
global prospective on urban future. We also stress the challenges that hamper its
construction so far, especially because of the data challenge that is comparing cities
over time and over space. Indeed, each country having (or having not) developed its
own way of defining cities and quantifying urban features, there remains a mon-
umental amount of work to collect and harmonize urban data over large period of
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time, as well as to identify what in each national evolution relates to generic and
specific processes. Cumulative modelling could help perform this task, or at least to
highlight areas of uncertainties. Our guess is that it will only be achieved by a large
collective and interdisciplinary collaboration (between urban and regional spe-
cialists, modellers, computer scientists, empirical and theoretical experts, data
providers and data analysts) based on open practices (as to data, methods and
models).
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Chapter 1
Is Urban Future Predictable?

Abstract Despite uncertainties linked to the increasing speed of technological and
societal evolution, important features of future urbanism can be predicted at the
regional and global levels and even sometimes for local situations.Comparative urban
studies have brought results about universal processes and typical trajectories in the
history of urban systems. This analytic description provides the basis for designing
robust dynamic models as well as realistic scenarios for exploring a diversity of
possible urban futures.

Introduction: Systems of Cities as Adaptive Complex Systems

Cities are places of the world where the majority of human beings are living now
and where the largest amounts of physical and societal wealth, skills, and values
of humankind are concentrated. Much is expected by many stakeholders about pre-
dicting what can be expected from their future evolution. A recent report by the
World Bank (2009) underlines the essential role of cities in economic development
and technological and social innovations, for the first time recognizing the value of
urban concentrations, even in poor countries. TheWorld Bank suggests that interven-
tions be targeted according to the type of city, via a regional, hierarchical typology:
metropolitan areas (areas of advanced urbanization) are the most liable to make use
of productive investments; intermediate or small cities (intermediate urbanization)
and densely populated ‘lagging areas’ diffuse this growth towards rural areas, while
the incipient urbanization in sparsely populated lagging areas means that they do
not draw much benefit from the process. Hence this report sets out to explore the
geographical diversity of cities with respect to size and regional density, the effects
of concentration on city growth and on the ability of cities to diffuse these effects
towards their hinterlands.

While facing tremendous challenges from the perspective of environmental
change, economic competition, disruptive technological innovation or political con-
flicts, the resilience of cities is often questioned. The originality of our approach is
to assess predictions about possible futures for cities from the knowledge that was
constructed about their past dynamics (Pred 1977; Pumain et al. 2015). The knowl-
edge we present here is new because it is inspired not by the observation of isolated
cities but by the lessons learnt from their relative situation in systems of cities and
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2 1 Is Urban Future Predictable?

their interaction with other cities within very large sets (of cities) over long time
periods. Our major assumption is that cities become more and more interdependent
during their evolution from the many exchanges they have with other cities and that
much can be learned from that co-evolution within systems of cities which become
a strong constraint on the future of individual cities.

Such knowledge is reliable because it is rooted in comparative empirical analysis
of huge datasets retracing the evolution of many urban indicators for a very large
number of cities over long periods of time in a variety of countries in the world.
When using classical statistical methods for international comparisons, we construct
a relevant geographical ontology for cities, identifying urban units which retain sig-
nificance over time, and which can be compared from one country to the next. We
choose to define urban units according to concepts that are rooted in geographic the-
ory, including reference to individual space-time budgets and taking into account the
variable forms of urbanization and territorial organization in different countries: this
means defining and delineating urban entities according to a geo-historical concept.
We thus maintain a theoretical approach in our conception of modelling in collab-
oration with mathematicians, physicists and computer scientists, leading to models
of complex systems that have relevance for social sciences. That is why we can
design simulation models that reconstruct the most salient features of the dynamics
of systems of cities for exploring plausible scenarios of their future evolution.

Cities are complex systems which are embedded in multiple networks conveying
people, goods and information (Rozenblat and Melançon 2013). These networks are
not randomly distributed on the surface of the earth, the spatial organization of the
flows they are conveying follows patterns that are widely governed by the existing
relative location of urban concentrations and reinforces them. Indeed, there are pos-
itive feedbacks between cities and all kind of flows (goods, people, information...)
sustaining them. Spatial interactions in societies shape geographical organization at
two main levels: most repeated interactions of daily life occur within cities while the
less frequent but recurrent interactions shape regional sub-networks of strongly inter-
dependent cities (Pumain 2006). That two-level organization was coined by Brian
Berry in a famous expression: ‘cities as systems within systems of cities’ (Berry
1964). Our conception is not unlike that view but instead of imagining a nested
hierarchy it puts the emphasis on the complexity of this organization, on the new
dynamic properties which emerge in the course of the formation of systems of cities,
and on the effect of these properties on the itinerary of each individual city.

One distinctive emerging property of this spatial organization is its sustainability,
because cities and systems of cities are adaptive. Adaptation means more- or less-
coordinated changes in every aspect of social life due to the assimilation by many
stakeholders of all kinds of innovations, may they be technological, organizational or
cultural (Lane et al. 2009). It is because goods, people and information circulate that,
all over the planet, cities are growing and adapting to the societal, technological, eco-
nomic and cultural changes that they continuously generate, and they become more
and more the reference for organizing the life of societies in geographical space. At a
micro-level, a city’s adaptive behaviour results from its own history, specific relation-
ship with its surrounding environment, and individual and institutional stakeholders’
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decisions. But at a macro-level, because of their mutual dependencies and competi-
tion, cities’ evolutions also result from complex interactions with other cities, within
multiple networks cities are involved in. Even if these interactions are surely less fre-
quent than those that occur in daily life, their recurrence shape systems of strongly
interdependent cities and in the long run, the multiplicity of interurban exchanges
and interactions results in the co-evolution of urban systems.

As the nature and scope of interactions between cities vary according to city size
and the spatial scale considered, ‘systems of cities’ are not easily identified and
delineated. Systems of cities usually are observed within national boundaries which
constrain some of the most frequent societal practices through a common language, a
sovereign regulation, a collective identity imagination and a cultural habitus, but the
interaction space of some cities, either because of their size or of their specialization,
can expand well beyond national borders or be organized in international specialized
networkswhose size ismore or less extensive, for instance in the case of transnational
firms (Rozenblat and Pumain 2007). That iswhy spatial and temporal contexts always
have to be carefully analyzed when trying to categorize dynamic processes of urban
systems.

Because of the interconnectedness that ensures the interdependence in their evo-
lution, there are common features in the dynamics of systems of cities which can be
considered as universal all over the world and that share non-trivial similarities with
observed structures in other complex systems (Pumain 2006; Batty 2013). From a
comparative statistical analysis of the demographic, economic and physical transfor-
mation of cities in many regions of the world we have identified the major invariants
in urban systems dynamics as ‘stylized facts’ that are summarized in our evolution-
ary theory of urban systems (Pumain 1997) and can be implemented in simulation
models.

Despite recent papers still attempting to validate theories of economic conver-
gence in systems of cities (Chauvin et al. 2016), complex systems have spread
through economic theory with the new economic geography (Krugman 1991) or
evolutionist economic geography (Boschma and Frenken 2006). It is now possible
to move beyond the idea that urban systems are in a state of equilibrium, or that they
tend towards optimization. Theoretical consideration can be based on the historical
and open nature of urban dynamics, and on the heterogeneity of agents at work in the
urban environment, whatever the geographical scale. We conceptualize the dynam-
ics of systems of cities as an open evolution that emerges from spatial and societal
interactions between cities without considering that it should meet any equilibrium
or optimization pattern. Multi-agent models are especially well designed for simu-
lating how a structure emerge and is maintained at the macro-level from the many
interactions between a variety of agents at micro-level (Ferber and Perrot 1995). We
also prefer using them because spatial network dynamics are still difficult to repre-
sent in mathematical models of differential equations (Pumain and Sanders 2013).
Multi-agent models allow testing theories by varying the rules and parameters of
the simulation model, paving the way for a hypothetico-deductive approach. They
are part of constituting a virtual laboratory which is the only possible substitute to
scientific experiment in social sciences.
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We consider that simulation models are very good tools to test elements of urban
theory, which can thus be articulated and hierarchised within a single model. First the
model is assessed in its ability to reproduce past evolutions with respect to their main
components and geographical expressions. This modelling process does not set out
to be realistic at all costs, it is not intended to accurately reproduce local observations,
but nor is it on the other hand purely ‘theoretical’ in the mathematical meaning of
the word. The rules and parameters, even if they correspond to abstract categories,
are always linked to processes and magnitudes which can be measured, so that the
model is calibrated with observations. It is this attention to plausibility as well as the
importance of path dependence in urban dynamics which enables us to consider the
use of these models not only as tools for reconstructing past dynamics, but also as
tools for exploring future scenarios. Comparative urban studies have brought results
about universal processes and typical trajectories in the history of urban systems. We
rely on these common features and universal evolution trends to construct plausible
broad patterns of cities behaviour at a global or regional scale, according to various
scenarios.

The first set of stylized facts we examine about systems of cities is linked to
their emergence which occurred some 10,000 years ago and created a new way of
managing the spatial relationships of societies and their resources with their environ-
ment. These facts are the basis of the SimpopLocal model we implement in Chap.2.
We shall then summarize a second set of stylized facts that describes the ordinary
dynamics of systems of cities once they are constituted. The simulation models that
were implemented to represent these facts will be detailed in Chap.4. The third set
of stylized facts is about which major specific features can be retained for adapting
our models to the variety of situations we find in different parts of the world. We
shall use these observations to adapt our models to real-word situations as explained
in Chap.4.

1.1 Emergence

We are interested in the emergence of cities not so much for the sake of reconstruct-
ing that history but mainly because it implies identifying precisely the processes
that distinguish the functioning of urban systems from previous forms of settlement
systems. In the history of societies, the appearance of cities marks an essential step
leading to an unprecedented multiplication of wealth and human populations, the
modification of their way of inhabiting the earth and managing resources. We thus
select, in describing this event, the major features that explain the urban development
through fundamental dynamic processes, trying to provide an abstract framework for
preparing a parsimonious model.

Urbanization in many respects is a universal process, temporally and spatially.
Temporally, it has emerged independently in different parts of the world, at differ-
ent moments in historical times since 10,000 BP but always a few thousand years
after the invention of agriculture in the few large regions where it was maintained

http://dx.doi.org/10.1007/978-3-319-46497-8_2
http://dx.doi.org/10.1007/978-3-319-46497-8_4
http://dx.doi.org/10.1007/978-3-319-46497-8_4
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(Bairoch1985).Mesopotamia seems tobe the earliest place of emergence followedby
Indus valley, South China and later onMeso-America. Due to its connection with the
previous invention of agriculture (the so-called ‘neolithic revolution’), the emergence
of cities was located in regions of subtropical climate in ecosystems where plant and
animal species were sufficiently diversified and exploitable (Diamond 1997). Cities
appearedwhen the social organizationwhich enabled a bifurcation towards sedentary
productive activities had lived a time long enough for multiplying their densities by
a factor of about 100, compared with previous nomadic societies of hunter-gatherers
(Marcus and Sabloff 2008). In the mean time, this long process lead to the accumu-
lation of an economic surplus which enabled a societal division of labour. However
for many centuries, this process more or less stagnated at a maximum of 10% of the
population engaged in activities other than merely food production (Bairoch 1985).

The spontaneous emergence of systems of cities and their success as an innova-
tion that would diffuse after many centuries all over the world can be interpreted in
functionalist terms. To face survival and ecological challenges, cities appear as an
ingenious societal invention which enables the reduction of the uncertainties linked
to resources of their local environment, by expanding connections towards other
cities that can provide complementary resources. Indeed, in all regions, cities did not
emerge as isolated entities but always as interconnected systems of cities, diffusing
and sharing their innovations as well as competing in a permanent rivalry for enlarg-
ing their stock of accumulated and potential resources. As a result (according to
the demonstration we recall below), these precocious systems of cities were already
characterized with a very asymmetric distribution of city sizes following a Zipf’s
law (Fletcher 1986). The stylized facts that we retain in modelling the emergence
of cities are indeed the basic elementary mechanisms of the ordinary functioning of
systems of cities. They include the development of innovations that were induced by
increasing interactions between people within and between cities, as well as the spa-
tial diffusion of such innovations from place to place, and their positive retroaction
on further population concentration and urban development. Unfortunately for that
remote period we do not have precise empirical data which would enable calibrating
amodel. That is whywe choose to develop an abstractmodel using theoretical knowl-
edge about spatial interaction (following a gravity rule), urban growth in systems of
cities (see section below) and empirical average orders of magnitude for the maxi-
mum city size, population growth rates (including implicitly the effect of innovation
on resource and population growth) and duration of the emergence period (Schmitt
2014). The model that is described in detail in Chap.2 is an attempt at establishing
generic conditions for the emergence and maintenance of systems of cities. The only
stylized fact on the simulated system of cities that we use as a constraint for cali-
bration is the generation of an urban hierarchy following a Zipf’ s law or lognormal
distribution, as explained in the next section.

http://dx.doi.org/10.1007/978-3-319-46497-8_2
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1.2 Generic Dynamic Features of Systems of Cities

Once systems of cities have emerged, their dynamics can be summarized by a few
regularities that appear everywhere, whatever the political organization or the eco-
nomic regime of the societies or the period of their development. Such dynam-
ics are characterized by: - the hierarchical differentiation of city sizes; - a relative
meta-stability of urban hierarchies over several decades and sometimes centuries;
- a regular quasi-stochastic process of growth sharing between cities due to their
interactions that explains both the hierarchical distribution and its meta-stability; -
a recurrent process of exogenous shocks by radical innovation which contributes to
reinforce the hierarchical structure and may introduce from time to time a qualitative
differentiation leading to the specialization of subsets of cities in new roles in the
urban system.

1.2.1 The Hierarchical Differentiation of City Sizes

One of the main universal characteristic of systems of cities observed in regional
or national territories is their organization in urban hierarchies. Nowadays there are
four orders of magnitude between the sizes of the smallest and the largest entities
called ‘cities’ in most of the large countries in the world: small towns cluster a few
thousand people (103) whereas the gigantic megacities concentrate more than 107

and as many as 30 million and more for the largest, Tokyo for instance. Whatever the
region of the world the number of cities follows an inverse geometric progression
of their size. Table1.1 gives the approximate number of urban entities in the world
(urban agglomerations, i.e. defined by contiguous built-up area) at two dates. To avoid
misinterpretation due to the spatial aggregation of cities that would not be engaged in
strong interactions, epistemological care must prevail. Indeed, when simulating the
evolution of systems of cities, even if a possible benchmark for validating themodel is
that the final distribution of city sizes is Pareto or lognormal, one essential preliminary
assumption to confirm its validity is to ensure that the selected cities within the
system are really strongly interacting during the simulated historical period. This
strong regularity is observed since the emergence of systems of cities and whatever
the political, economic and cultural systems in which cities evolve.

Table 1.1 Number of urban
agglomerations in the world
according to their size
(Source: F. Moriconi-Ebrard
(Geopolis) and
Population.net)

Number of
inhabitants

1950 2010

107 2 39

106 83 526

105 1050 5100

104 10800 59000
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This hierarchical distribution of city sizes was formalized during the twentieth
century first by Felix Auerbach (Auerbach 1913) who noticed the rather constant
product between the size of a city and its rank in urban hierarchy and Robert Gibrat
(Gibrat 1931) who applied his ‘law of proportional effect’ (added growth during a
short period is proportional to initial city size and randomly redistributed at each time
interval) for generating lognormal distributions of city sizes, before the statistician
George Kingsley Zipf imposed the Paretian model of the ‘rank-size rule’ (Zipf et al.
1941) that is mostly satisfying for its descriptive visualization and the slope of the
adjusted line being a convenient comparable index of the inequality of city sizes
(Pumain et al. 2012). A huge literature about which statistical model would be the
best fit has been published leading to significant methodological improvements but
very often the results are contradictory and remain uncertain (Nitsch 2005; Favaro
and Pumain 2011) mainly because not enough attention is paid to the quality of
empirical data (including the consistency of urban definitions over time, as well as
the effect of variable number and size threshold of cities being considered (Pumain
et al. 2015; Cottineau 2016).

Besides these statistical descriptions summarizing this ‘heavy tailed’ asymmetric
distribution, geographical explanations of the number of cities and towns accord-
ing to their size were provided the central place theory built by Walter Christaller
(Christaller 1933). According to this theory, cities develop through the principle of
providing services to a regional population under the constraint of proximity. As a
consequence, the bigger the city, the more it provides rare goods and services, to a
larger and more distant population. Cities of similar size thus have a regular distance
between them, and the population in their sphere of influence is proportional to their
size. The corresponding spatial organization is a nested urban hierarchy. Although
Christaller mentioned in a perspective that the number of centres should be reduced
when the improved transportation systems could enlarge the range of the services
provided by the largest cities in the urban hierarchy, this observation was not formal-
ized in the theory and other stylized facts regarding the evolution of urban hierarchies
were added later (see below Sect. 1.2.4).

1.2.2 The Meta-Stability of Urban Hierarchies

Many centuries after the emergence of the first systems of cities, all urban regions
in the world became connected by more or less regular exchanges and the local
urban systems were developing mutual influences and complementarities. The sharp
lowering of transportation cost associated to the Industrial Revolution at the end of
eighteenth century and the accompanying immense increase in productivity triggered
huge population migrations towards urban centres. This started the ‘urban transition’
(Zelinsky 1971) that has come to an end in themore developed countries since second
half of twentieth century but is still operating in the emerging and poor economies.
Half of the world population lived in cities at the turn of this century and more than
three quarters are expected to become urban by 2050.
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Despite the technological, economic and societal turmoil associated with the
industrial revolution, the demographic transition and the strong acceleration of urban
growth, the urban hierarchies keep a remarkable stability on the long run in the
regions of the world where urbanization developed continuously such as Europe or
Asia. For instance, the correlation coefficient between the ranks of cities in the Euro-
pean urban hierarchy reaches about 0.8 between the beginning of the eighteenth and
the end of the twentieth century (Bretagnolle et al. 2000). Of course this stability only
occurs in integrated systems where cities have been interconnected through recurrent
exchanges of people, goods and information and evolve under the same set of societal
rules. As a proof of this, when putting together all cities of the world and comparing
the evolution of their rank, Batty (2006) finds much more contrasted trajectories on
his ‘rank clock’ visualization tool. This was also rather the case in his paper about the
demographic trajectories of 200 US cities from 1790 to 2000 (Batty 2003), because
of the peculiarity of this system of cities which was expanding very recently com-
pared to Europe and Asia and according to a colonial process that filled space along a
moving frontier (Bretagnolle et al. 2008). As very few cities are nowadays ‘created’
from scratch (even in the past most of themwere previously villages that expanded in
a progressive way including many fluctuations in their development), and as sudden
complete destruction of cities have become very rare after fifteenth century, there
are rather strong ‘path dependence’ effects (Arthur 1994) in the current evolution of
urban hierarchies. This can be better understood if one considers the general process
of transmission and amplification of growth in systems of cities.

1.2.3 A Regular Quasi-stochastic Process of Growth

The hierarchical distribution of city sizes no longer remains a ‘mystery’ (Krugman
1996) if we consider that it is the outcome of a process of urban growth in which
every city has a probability to grow at the same rate in each time interval (Gibrat
1931). This averaging of urban growth rates is explained in first approximation by
the expectancy of natural growth to be constant in homogeneous populations at a
given period in historical time and by the gravity like process of migrations when
geographical space is integrated through regular interactions (Wilson 1970). On the
very long run, due to stochastic fluctuations, these interactions differentiate accu-
mulations of wealth and population in the cities according to highly dissymmetrical
statistical distributions.Many tests of that theoretical growth process were conducted
on longitudinal empirical data that confirm its ability to describe the interurban dis-
tribution of urban growth rates, at least as a first approximation (Gibrat 1931; Robson
1973; Pumain 1982; Pumain and Moriconi-Ebrard 1997; Pumain 2006; Bretagnolle
et al. 2008; Pumain et al. 2015).
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Howevermanyother attempts have lead to contradictory results about the accuracy
of the model and it is difficult to determine whether these contradictory results are
explained by the differences in testing methods, by the geographical and historical
context of the country and period under analysis, or, more probably, by the way
urban entities are defined in the empirical databases. In any case, even when cities
are properly delineated according to a consistent geographical definition and when
population growth is measured on long enough time periods (for instance see Robson
1973), it appears that the growth process in integrated systems of cities is stochastic
in a first approximation only. ‘Three anomalies compared to the stochastic rules of
Gibrat’s model have been identified: (i) A trend for a positive correlation between
city size and urban growth ; (ii) a positive or negative correlation between successive
growth rates at some periods of time, over several decades, indicating a persistency
of growth impulses in the same locations or a reversal in growth locations; (iii) a
heteroscedasticity of growth rates: large cities have smaller growth rates standard
deviation than the smaller towns’ (Favaro and Pumain 2011).

These observations have the advantage to question a fundamental assumption of
the stochasticmodel, namely the statistical independence between urban units, which
contradicts our concept of connected cities, each other informed of their changes and
co-evolving through multiple networks linking them (Robson 1973; Pumain 1982;
Hernando et al. 2015). Indeed, the ‘random’ distribution of growth rates rises from
these connections that integrate cities in relations of complementarities and compe-
tition within a territory where common rules of political, economic and social func-
tioning are shared. As the slight deviations to the stochastic model can be explained
by the way innovation waves are propagated in systems of cities, taking them into
account would help conciliating both views.

1.2.4 Hierarchical Diffusion of Innovation Waves
and Functional Specializations

The functional and hierarchical organization of cities in systems is powered by the
regular emergence of all kinds of societal innovations (Duranton and Puga 2001).
According to the well-exemplified theory of hierarchical diffusion of innovations by
Hägerstrand (1952), there is a higher probability that new technologies or cultural
practices will be at first captured by the largest cities. Large cities have more risk
capital ready to invest, a higher diversity and level of skills, and a better access to
information. It is there that new things can develop and become adapted to societal
uses inventing new functionalities to every newartefact and social practice (Lane et al.
2009). As a result, although large cities suffer higher costs (mainly through wages
and rents) they take benefits from innovation at its highest point of return, and this
explains why they receive the accompanying growth impulse earlier than the other
cities of the system that soonwill imitate the innovation. On the long run, the repeated
incremental growth surplus linked to this delay in the hierarchical transmission of
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innovation leads to a (very) slight deviation from the stochastic model of growth
inducing a small advantage to largest cities in the system. A first consequence is a
trend towards growing inequalities in city sizes, exceeding what would be produced
by a purely stochastic Gibrat’s model.

The growth impulse associated with innovation is more spectacular when, for
various reasons, (usually a localized resource necessary to the development of the
new product or activity) it concentrates in smaller towns which experience a sudden
urban growth. This leads to the specific development of specialized cities (cities of
mining industry, of steel industry during the first industrial revolution, tourist cities
since the 19th century, as well as university towns, are the most frequent examples).
Usually when the associated development remains located in small towns the spe-
cialization tends to hamper their further development because it reduces their ability
to adapt to further innovation waves, but if the innovation wave brings large quan-
tities of employment and profits in specific cities or regions it may lead to a partial
reorganization of the spatial and hierarchical structure of the system of cities, for
instance when British industrial cities emerged in nineteenth century, or when indus-
trial revolution contrasted urban evolution in North-East and South-Western France,
or when successive waves of innovation were developing the North-East, then the
West and South, of the system of cities in the United States, (Bretagnolle et al. 2008)
or when mining and oil industries boosted the development of Siberian new towns
(Cottineau 2014). The structure of urban systems, understood as the hierarchical and
spatial distribution of cities, thus results of social, functional and technical adapta-
tion of cities to the anthropological developments of the territories in which they
are rooted. The functional and hierarchical organization of the systems also evolves
according to the progress in transportation and communication techniques and net-
works. That evolution transforms the interactions between cities, and the diffusion
of the innovation waves within the systems.

1.3 Variety in the Evolution of Urban Systems

In a multi-scale perspective, it is of great importance to identify levels of system
description that are significant, sufficiently abstract to enable comparison and mod-
elling, but sufficiently detailed to return a plausible picture of geographical diversity.
Computer modelling focuses even more attention on the need for ‘ontological’ clar-
ification. The models we produce do have a generalization potential, illustrating a
theory of systems of cities. But our approach differs from certain theories such as
the New Urban Economy, or experiments generated from a universalistic physical
research perspective (West, Bettencourt), or again research in the field of the dynam-
ics of complex systems made up of sub-systems or homogenous agents: it differs in
that it does not start from an object, ‘the city’, apprehended in its singleness. Our
approach stipulates that the dynamics that lead to a co-evolution of cities within a
system generates the diversity of the cities, and proceed from this diversity, according
to a recurrent process throughout the history of the cities in question. It also assumes
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that while the systems of cities share common static and dynamic properties, they
also present a diversity that can be related explicitly to certain conditions attendant
upon their spatiotemporal development.

It is appropriate here to define what we mean by diversity. What is meant is ‘geo-
diversity’, which corresponds to attributes that are expressed in spatial and territorial
manner, on the levels of both the city and the system of cities. For each city, among
numerous possible descriptors, and among those suitable for comparisons and quanti-
tative modelling, we have chosen those generating the most marked differentiations
between cities. From multivariate econometric analysis, it is recognized (Pumain
2006) that the main source of urban diversity is of hierarchical nature, because city
size (measured in international comparisons either by the number of residents, in
which case it varies from 103 to 107, or on the basis of wealth or the urban product)
is strongly correlatedwith awhole set of indicators—indicators of the level and diver-
sity of equipment and services, of position and outreach of territorial and functional
networks, of quality of the human capital, of complexity of social organization and
ability to capture innovation. The second important source of urban geo-diversity is
the economic orientation, or functional specialization, which is only partially depen-
dent on city size (smaller cities can have an important role, for instance arising from
the presence of international institutions, or cutting-edge research). This depends to
a large extent on local and regional production factors, and relates to concentrations
of activity that have often been formed under the impetus of successive innovation
cycles.

Each system of cities, considered for example within a national territory or a
sufficiently large continental unit, possesses a hierarchical and functional diversity
that corresponds to the relations of complementarities set up within its boundaries;
these boundaries remaining relatively impermeable over periods of variable duration,
often several centuries. An issue of general importance in complex systems is the
evaluation of scaling relationships between the dimensions of the territories and those
of the cities, and also the degree of functional specializations. The difficulty in this
type of research is to establish equivalences between systems, and the problem of
the unsuitability of the socioeconomic nomenclatures available. The permeability of
boundaries is not independent from city size (the outreach of its relationships tends to
increase with size), and varies over time along with city sizes, which adds a further
difficulty which modelling experiments can help to overcome. Other attributes of
cities, such as their type of governance, their architectural or cultural style, or their
image, also are major sources of diversity, and their effects on city dynamics could
be simulated by way of suitable scenarios (this is particularly true for governance).
Although these qualitative attributes receive considerable interest in the literature
among various disciplines (Panerai et al. 1997; Hannerz 1992; Polèse and Stren
2000; Scott 2002 to quote only a few) that type of urban diversity is not the one we
shall focus on in this book.

Weconcentrate here on the evolutionof the hierarchical structure of urban systems.
That feature seems to be universal, regardless of the geographical environment, the
economic system and sociopolitical organization in which they are rooted. However,
beyond the common structures and dynamics, systems of cities in various parts
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Fig. 1.1 Distributions of city sizes in seven large regions in the world

of the world present singularities resulting from their evolution in historical and
political contexts that were sometimes very different. Thus identification of generic
evolutionary mechanisms and processes peculiar to each system of cities should
enable better prediction of its future evolution. From the observation of the variations
of urban hierarchies around the strong attractor that represent the statistical models
of Zipf’s rule or the lognormal distribution of city sizes (Fig. 1.1), we have identified
three different types of systems of cities: ancient systems, ‘new world’ systems and
colonization systems.

1.3.1 A Simplified Typology of Systems of Cities

The diversity of hierarchical differentiations has been widely studied, using informa-
tion databases that are strictly comparable, by F. Moriconi-Ebrard (Moriconi-Ebrard
1993); other authors, including ourselves, have analyzed functional diversity in dif-
ferent types of economy and for different periods identifying three types of systems
of cities, each linked to a specific historical context, differentiated by their spatial
and hierarchical distribution.

A first type characterizes the countries and continents where the urbanization
process has been ancient and regular, as in Asia and Europe. In this context, cities
were formed at times of slow transportation means; they were more or less regularly
spaced, at short distances. Urban hierarchies are still not very contrasted and include
many small towns. China, India andEurope illustrate that type of structure onFig. 1.1.
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A second type of systemof cities characterizes countries of the ‘newworld’, where
cities developedmore recently, at a timewhen transportation systems could linkmore
distant places faster, and where development proceeded more from the dynamics of
these networks than the provision of services to a less dense or non-existing rural
population (Moriconi-Ebrard 1993; Bretagnolle et al. 2008). In these countries urban
growth depended first on trade with the outside and it boosted small towns in waves
along pioneering fronts (Bretagnolle and Pumain 2010). Growth was less regularly
distributed spatially and temporally as in systems of cities of the ‘old world’. As a
consequence of this particular history of urban development, systems of cities in the
new world have a smaller number of cities, stronger contrasts among city sizes and
a higher degree of concentration of the urban population (this is true at the macro-
scale, even though the local density of urban settlements may be very low as in the
United States). Comparing the slopes of rank-size distribution on Fig. 1.1 illustrates
this fact since the USA, South Africa and Brazil have values of the exponent well
above one whereas China, India and Europe are below (Pumain et al. 2015).

A third type of system of cities is specific to the countries where the urbanization
process is ancient but its evolution was disturbed by an ‘external’ shock during
a stage of colonization. As a consequence, there is often a dual pattern including
an endogenous system of central places superimposed by one or a few very large
metropolises, often maritime ports that ensured the connection with the country from
which the colonial power originated and whose growth was disproportionate with
the economy of the local territory. This is the case in many African countries, it also
happened in India with the exceptional development at the time of the British Empire
of large ports as Mumbai, Kolkata and Chennai and the capital Delhi (Swerts 2013).
In such systems, the stigma of colonization is thus a ‘macrocephaly’ of the system
of cities which introduces a sharp discontinuity in the distribution of city sizes—this
is more rarely encountered in countries having a more continuous history, although
it may happen as well in particularly politically centralized smaller countries such
as France.

1.3.2 Systematic Variations in the Rhythm of Urban Growth

Another important distinction which has to be made before modelling the evolution
of systems of cities is linked to the date of their ‘urban transition’, which is rather well
correlated with the level of economic development they have nowadays. The richest
countries in the world have achieved this urban transition. It started in the nineteenth
century with industrial revolution and ended a little after the mid-twentieth, reaching
urbanization rates (i.e. the proportion of urban in total population) above 70%, around
80% in Japan, North America and Europe and close to 100% in the smallest of
‘city states’ such as Singapore. Among developing countries, history has been more
heterogeneous, since many countries of Hispanic culture in South America were
urbanized early with respect to their current level of wealth, whereas on the contrary
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the urbanization rates remained very low in India and China as in most African
countries South of Sahara—South Africa excepted.

There is another difference occurring in demographic and urban transition which
is linked to the level of economic development. As a consequence of their delayed
urban transition, which coincided with their also delayed demographic transition, the
poor countries had access to better health conditions because of globalization and
they thus experienced much higher urban growth rates than what was observed in
industrialized countries at the time of the industrial revolution. Typical urban growth
rates are around 4% per year in many poor countries since the 1950s which is twice
the highest mean values observed in UK in nineteenth century for instance (Robson
1973). Such an acceleration of the urbanization processes combined to their historical
concomitance with a completely modified context of socio-spatial interactions and
economical and ecological constraints may of course introduce new peculiarities in
the way systems of cities will evolve in the now developing countries.

Therefore we use these classifications as a basis for selecting systems of cities
on which our simulation experiments are conducted, using adapted versions of the
generic SIMPOP model in order to provide a better understanding of the particulari-
ties of the evolution of each system of cities.We shall summarize briefly in Chap.2 of
this book how the successive versions of the ‘Simpop family’ of multi-agent models
(Pumain et al. 2012) have helped in testing and developing our evolutionary theory
of urban systems. We rely on this type of modelling for constructing a ‘virtual lab-
oratory’ that mixes knowledge from urban experts and computer scientists and is
dedicated to the exploration of possible urban evolutions.

1.4 Urban Future: Models and Scenarios

There are many challenges in predicting the future or urban systems. Some are linked
with uncertainties about the concrete sources of yet unpredictable technological or
cultural innovations or even sudden outbreak of societal conflicts that may induce
catastrophic changes and create tipping points in the evolutionary curve of urban
development. Such events are clearly theworse limitation to any attempt in predicting
urban futures. But even in the perspective of an urban evolution that would not suffer
such kind of ‘external’ perturbation, our simulation exercises meet two types of
difficulties; some depends on the choice between different scenarios; others relate to
the capacities of our modelling techniques.

1.4.1 Challenges in Building Scenarios About
Urban Evolution

The simplest way of drawing a scenario for the future evolution is first to capture
the existing dynamics (for instance by calibrating a model on a historically observed
evolution) and then to extend it with the integration of highly predictable evolutions

http://dx.doi.org/10.1007/978-3-319-46497-8_2
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that are already calculated by many institutions engaged in future studies and fore-
casting. It is easy to integrate their previsions in our models, especially those which
relate to demographic growth, population and labour force, and the predicted trends
for the urban transition, accelerated in China and still slower in India and boom-
ing in Africa: urban growth is both necessary for raising wealth and better health
and welfare conditions while being facilitated by raising education level or foreign
investments, even if possibly collaterally hampered by growing societal inequalities
or an outbreak of armed conflicts. But even in this highly probable evolution, it is
possible that the aggregated variables we use for simulating the urban evolution do
neglect possible sources of tipping points that become difficult to predict when the
detailed description of the corresponding processes is left out of the model.

Such failures to predict urban futures were observed with the previous versions
of the Simpop model when we could not reconstruct the observed inflexions of past
evolution without introducing ad hocmodifications of the ‘ordinary urban dynamics’
that was implemented in the model. For instance, we discovered that the Simpop2
model,while correctly reconstructing the evolutionofmostEuropean towns and cities
over three centuries, was totally unable to predict correctly the size that was actually
reached by a few cities of exceptionally large size that dominated this system of
cities at least since the Middle Ages (Bretagnolle and Pumain 2010). The existence
of ‘primate cities’ (Jefferson 1989) in systems of cities, although rare, is a well-
known feature usually included in urban theories and linked to the concentration in
one place (usually a political capital) of the urban interactions with other systems of
cities that brings very high returns and accelerated growth locally. Simpop2 should
have included a special urban function (i.e. defining attributes and interaction rules
of a ‘city agent’) corresponding to ‘global cities’ in the model to solve this problem.

Another challenge is to find a way to simulate the tipping points that lead to a
switchover in the relative evolution of entire regions of the system of cities. Our
previous simulation of the European system of cities demonstrated the difficulty of
accommodating the ‘usual’ dynamics of a system of cities to reconstruct the shift in
urban growth from cities of theMediterranean regions towards those of the North Sea
around the seventeenth century (Bretagnolle and Pumain 2010). A similar difficulty
would arise when trying to develop a scenario taking into account the shift of urban
and economic development that occurred in the second half of the twentieth century
from the Atlantic toward the Pacific regions of the world. Although, in demographic
terms, cities of the Pacific region already win the size contest, it is debatable if
and when the same will happen in economic terms. Tuning that in models is not so
easy, as illustrated perhaps by the successive adjustments of Chinese policies dealing
precisely with that evolution.

Other challenges that are oftenmentioned in designing scenarios for urban futures
may be not so difficult to meet. For instance dealing with the ‘ecological revolution’
that would be made inevitable by climate change and the depletion of resource
and implementing its possible effects in the evolution of systems of cities can be
relatively easy to imagine because it is probable that it will follow the usual process
of diffusion of innovation waves: there will most probably be a ‘top down’ diffusion
of new regulations, as for instance those of the COP21 international agreement, and a



16 1 Is Urban Future Predictable?

‘bottom-up’ diffusion of locally invented ‘best practices’ that circulate among cities
in a diversity of information and emulation networks. A similar predictive scenario
could be imagined about the possible effects of the Internet or the digital revolution:
although many often mention their contribution to a ‘flattening’ of world disparities
what is observed is a trend to growing inequalities as usual in the dynamics of systems
of cities. Even if local urban bifurcations are still possible with respect to the surge
of some highly specialized cities, it must be recalled that such ‘economic miracles’
do not happen in isolated places as in the example of Silicon Valley indeed close
to San Francisco already existing infrastructures, social networks, human skills and
capital as well as federal investments (Saxenian 1994; Storper et al. 2015).

1.4.2 Challenges in Model Validation

The reliability of the predictions that can be made using models not only depends on
the plausibility of the scenarios they use but it also—if not above all—depends on
the quality of these models which are usually tested through calibration on past data.
However the methods that were available until recently to ensure the validity of the
calibration of amulti-agent model were clearly far from sufficient (Rey-Coyrehourcq
2015). For instance, the first versions of the Simpop model were calibrated simply
by trial and error. This method has the advantage of allowing the experimenter to
intuitively guide the selection of parameter values depending on the desired effect,
but it proves a source of difficulty when the model is complex and subject to many
bifurcations: a slight change in the value of a parameter can cause an opposite trend
to that desired, which requires the whole process to be tested again after changing
the values of one or more other parameters.

This method quickly becomes tedious and time consuming, notwithstanding frus-
trating as the modeller has no idea of the huge parameter space which is left out of his
scope. It is generally based on a calculation designed to minimize an objective func-
tion whose stopping criterion does not establish the certainty that it has attained the
best possible value. Consequently, once the model was consolidated in its implemen-
tation with a first battery of experiments, the determination of the parameter values
for considering the model as ‘validated’ was performed with a hundred simulations
(Bura et al. 1996; Sanders et al. 1997; Bretagnolle and Pumain 2010). Indeed, this
rather low number of experiments that was completed with each version of the model
also is explained by the capacity of available computers at the time that implied a
rather long-computation time for each simulation because this type of model uses a
huge number of spatial interactions between cities.

We demonstrate in this book how these difficulties can now be overcome or
reduced by the development of new ways of building and evaluating simulation
models in geographical systems. First, we better assess the elementary processes
which characterize the dynamics of systems of cities in a very simplified model
designed to simulate the emergence of cities, the SimpopLocal model; second, we
develop an automated method for its evaluation that change dramatically the order
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of magnitude of the number of experiments for validation from some 102 to some
108 (Chaps. 2 and 3); third, we develop a new way of designing a model that injects
step-by-step refinements in the granularity of its description, either by introducing
new mechanisms that integrate less general aspects of the dynamics of the urban
system under study or by introducing complementary elements of the environmental
or political context thatmay interfere in the evolution of the systemof cities (Chap.4).
These developments rely on the construction in parallel of powerful new tools that
deeply transform the practice of geographical modelling and enlarge our confidence
in its further practical application.

Conclusion

In theory, urban systems have a historical dimension, including path-dependent
specifics and contingencies, which makes their future unpredictable, like that of
other self-organizing complex systems subject to emergence processes or bifurca-
tions. However, observations of past developments enable to establish a series of
‘stylized facts’ or regularities in urban dynamics that provide a framework of possi-
ble future developments, for periods of several decades with a relatively satisfactory
level of confidence.

We shall demonstrate in this book a new way of building models that would
be more reliable and useful for simulating the evolution of systems of cities in a
variety of geographical and economic conditions. A new start is proposed, relying
on our previous experiences, for building and implementing newmulti-agent models
using the power of new computing methods and considerably enlarged computing
capabilities.
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Chapter 2
The SimpopLocal Model

Abstract The model is described in detail in order to explain how to implement
the stylized facts that are theoretically essential for representing the emergence of
cities into a multi-agent system. The model activates rather simple feedback loops
between settlement size, innovation and resources enabling settlement growth from
local innovation creation and inter-settlement diffusion. The necessary attributes,
processes and parameters of the model, that were identified according to a rule of
parsimony, are described and their estimated values after simulations are presented.

2.1 Introduction

From the stylized facts summarizing the historical process of the emergence of cities
which we have briefly recalled in Chap.1, we create SimpopLocal to simulate the
growth dynamics of agrarian settlements and their possible evolution towards urban
settlements under strong environmental constraints that are progressively overcome
by successive innovations. In order to ensure the replicability of the model, the
source code of SimpopLocal is filed in a public repository (http://iscpif.github.io/
simpoplocal-epb/).

2.2 Purpose of SimpopLocal

This exploratory model aims at reproducing a remarkable aspect of the spatial struc-
ture of settlements systems, defined in the literature as a major stylized fact: in any
system already studied, in any places and in any period of history or prehistory times,
the distribution of size (population or spatial extent) is strongly differentiated, includ-
ing many very small settlements and only few very large settlements according to a
rather regular distribution of the Zipf or log-normal type (Fletcher 1986; Liu 1996).

This hierarchical pattern is a structural property (order in the size of entities) at
macroscopic level that is particularly resilient over time, whatever the local fluctua-
tions which take place at entity level. The SimpopLocal model is designed for testing
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the hypothesis enunciated in the evolutionary theory of urban systems (Pumain 1997)
which explains this structural feature from the urban growth process sustained by
all kinds of technological and societal innovations and their spatial diffusion among
connected settlements.

This model adds to the usual stochastic model of urban growth that is simply
proportional to city size and leading to a log-normal distribution (Gibrat 1931) the
effect of the spatial interaction which amplifies the growing hierarchical differentia-
tion among settlement sizes that is observed over time in geographical urban systems
(Favaro and Pumain 2011).

SimpopLocal is part of the Simpop agent based model family. In comparison of
models already developed, SimpopLocal adopts some new original paths. First, it
simplifies theway that was used until now to qualitatively discriminate the successive
innovation waves that were represented by various urban functions, it captures all of
them in a single abstract innovation object.

Second, SimpopLocal makes the process of innovation creation endogenous by
linking it with the size of settlement. This more parsimonious version of model
building enables the development of better and more systematic exploration and
evaluation of ABM. SimpopLocal was initially developed using Netlogo language,
and later redeveloped using Scala programming language.

We describe the model following the ODD standard principles (Grimm et al.
2010), in a slightly different order, and without describing the ‘design concepts’,
whose categories are not relevant here.

2.3 Entities, State Variables and Scales

The model represents the evolution of settlement units that are dispersed in an area
large enough for sustaining a few thousands population but limited enough in surface
for ensuring the possible connection between settlements according to the transporta-
tion means that are available at the time. Typically, it could be a region as antique
Mesopotamia or Meso America. The landscape of the simulation space is composed
of hundreds of settlements. Each settlement is considered as a fixed agent and is
described by three attributes: the location of its permanent habitat (x, y), the size of
its population P , and the available resources in its local environment.

The amount of available resources R is quantified in units of inhabitants and can
be understood as the carrying capacity of the local environment for sustaining a pop-
ulationwhich depends on the resource exploitation skills that the local population has
acquired from inventing or acquiring innovation. This resource exploitation is done
locally and sharing or trade is not represented explicitly in themodel. Each new inno-
vation created or acquired by a settlement develops its exploitation skills. Contrary
to previous more ‘realistic’ models of the Simpop family, we do not want to consider
the nature of innovation by identifying each significant innovation wave as a new
urban function. We simplify the model by retaining only the processes of emergence
of innovation and their effect on urban growth. The innovation entity is understood
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here as a large and abstract invention socially accepted which could represent a tech-
nical invention, a discovery, a social organization, some new habits or practices ...
Each acquisition of innovation by a settlement brings there the possibility to surpass
its capacity threshold, and by consequence authorizes a demographic growth. The
state variables defined at macro-level are the size distribution of settlements and the
slope of the rank size distribution.

2.4 Processes Overview and Scheduling

The scheduling of a simulation of the model is presented on Fig. 2.1 and will be
further detailed for each part of the process linking the evolution of innovation,
resource and population growth in the settlements.

After the initialization of the settlements, the interaction network is created. Then,
at each simulation step, the mechanisms of population growth (grow population) and
innovation diffusion (diffuse innovation) are applied. According to the number of
innovation, the impact of these innovations is applied on the settlement’s resource
extraction efficiency (apply innovations). Then, the innovation creation mechanism
(create innovation) is applied, with the same effect on resource extraction efficiency.
This loop is iterated until the stopping criterion is reached: in this case after 4000
steps or if the maximum number of innovation has been reached. We now present
each of these mechanisms in detail. Regarding the ODD protocol, these mechanisms
would be labelled as the submodels of SimpopLocal.

2.4.1 Population Growth Mechanism

The growth dynamics of a settlement are modelled according to the assumption that
its size is dependent on the amount of available resources in the local environment
and is inspired by the Verhulst model (Verhulst 1845) or logistic growth.

For this experiment, we assume a continuous general growth trend for
population—this may be different in another application of the model. The growth
factor r is expressed on an annual basis; thus, one iteration or step of the model
simulates one year of demographic growth. The limiting factor of growth Ri

M is
the amount of available resource that depends on the number M of innovations the
settlement i has acquired by the end of the simulation step t .

Pi
t is the population of the settlement i at the time t :

Pi
t+1 = Pi

t

[
1 + r

(
1 − Pi

t

Ri
m

)]
(2.1)
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[ t > 4000
ou
sum innovation > max innovations ]

set initial settlements

create interaction network

<< loop >>

grow population

create innovation

diffuse innovation

for each settlements

[ innovations > 0 ]
apply innovations

[ else ]

[ innovations > 0 ]
apply innovations

[ else ]

state

Fig. 2.1 SimpopLocal activity diagramm

2.4.2 Apply Innovation Mechanism

The acquisition of a new innovation by a settlement allows it to overtake its previous
growth limitation by enabling a more efficient extraction of resources and thus a gain
in population-size sustainability. With the acquisition of innovations, the amount of
available resources tends to the maximal carrying capacity Rmax of the simulation
environment:

Ri
M

innovations acquisi tion−−−−−−−−−−−−−→ Rmax (2.2)

The mechanism of this impact follows the Ricardo model of diminishing returns
(which also is a logistic model). The I nnovationImpact represents the impact of
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the acquisition of an innovation and has a decreasing effect on the amount of available
resources Ri

M+1 with the acquisition of innovations:

Ri
M+1 = Ri

M

[
1 + I nnovationImpact

(
1 − Ri

M

Rmax

)]
(2.3)

2.4.3 Create and Diffuse Innovation Mechanisms

Acquisition of innovations can occur in two ways, either by the emergence of inno-
vation within a settlement or by its diffusion through the settlement system. In both
cases, interaction between people inside a settlement or between settlements is the
driving force of the dynamics of the settlement system. It is a probabilistic mech-
anism, depending on the size of the settlement. Indeed, innovation scales superlin-
early: the larger the number of innovations acquired the larger the settlement and the
higher the probability of innovation. To model the superlinearity of the emergence of
innovation within a settlement, we model its probability to be created by a binomial
law.

If Pcreation is the probability that the interaction between two individuals of the
same settlement is fruitful, that is, leads to the creation of an innovation, and N the
number of possible interactions, then, by the binomial law, the probability of the
emergence of at least one innovation P(mcreation > 0) can be calculated and then
used in a random drawing:

P(mcreation > 0) = 1 − P (mcreation=0) ,

= 1 −
[

N !
0!(N − 0)! ∗ P0

creation ∗ (1 − Pcreation)
N−0

]
, (2.4)

= 1 − (1 − Pcreation)
N

If the size of the settlement is Pi
t then the number N of possible interactions

between individuals of that settlement is:

N = Pi
t

(
Pi
t − 1

)
2

(2.5)

The diffusion of an innovation between two settlements depends on both the size
of populations and the distance between them.

If Pdi f f usion is the probability that the interactionof two individuals of twodifferent
settlements is fruitful—that is, leads to the transmission of the innovation—and K
is the number of possible interactions, then, by the binomial law, the probability of
diffusion of at least one innovation P(mdi f f usion > 0) can be calculated and used in
a random drawing:
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Fig. 2.2 Diffuse innovation
mechanism activity diagram

<< loop >>

for each selected neighbor

get local network

<< loop >>

for each neighbor

diffuse innovation ?

[yes]

[no]

filter innovations

the list of possible
settlements after filtering:

Only A, B and C can diffuse
innovation to me

Comparison of each
neighbor's innovation pool
with mine to avoid
duplicates:

I have : i2, i3
A has : i2, i3, i4, i6
B has : i2, i3, i5, i7
C has : i8

Filtered innovation
A : i4, i6
B : i5, i7
C : i8

diffuse innovations

take one innovation
randomly A list with one innovation by

possible neighbor

After random operation :
A : i6
B : i7
C : i8

group innovation by
rootID

<< loop >>

for each group

take one innovation
randomly

copy this innovation

EXAMPLE

I have four neighbors :
A ; B ; C ; D

A settlement cannot have
two innovations with the
same initial root dentification
"rootId".

After grouping :
{ i6 -> X, i7 -> X}, { i8 -> Y }

i6 and i7 are in the same
group.

Only one innovation per
group can diffuse.

Final innovation list for
diffusion :
{i6, i8}

According to the stochastic
innovation diffusion rule
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Create innovations

innovate ?

[no]

[yes]

new innovation

According to the stochastic
innovation creation rule

Apply innovations

<< loop >>

for each innovation

impact resources of
settlement

<< loop >>

for each innovation

compare with my list
of innovations

[same root id ?]

[else]

remove from list

Filter innovations

test innovation age

[age > innovationLife ?]

[else]

remove from list

[yes]

[yes]

Fig. 2.3 Creation, filter and apply innovation mechanisms activity diagrams

P(mdi f f usion > 0) = 1 − (1 − Pdi f f usion)
K (2.6)

But in this case, the size K of the total population interacting is a fraction of
the population of the two settlements i and j which is decreasing by a factor
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Settlements

Id : Int
Population : Double
AvailableRessources :
Double
X : Double
Y : Double
SettlementClass : Int

radius()

Innovations

Id : Int
date : Int
rootId : Int

0..nown 0..1

0..n

clone

0..n
own

State

Id : Int

Fig. 2.4 UML class diagramm of SimpopLocal

DistanceDecay with the distance Di j between the settlements, as in the gravity
model:

K = Pi
t P

j
t

2DDistanceDecay
i j

(2.7)

The process of population growth and the process of innovation creation and
diffusion are reiterated throughout the simulation (Figs. 2.2 and 2.3). Because of
the two positive feedbacks that operate on resource and population growth through
the creation of innovation, the model is able to generate a very rapid expansion of
settlements: that is, an escalation of settlement growth. The simplest way to avoid
situations where too many innovations are created, which would lead to huge time-
consuming simulations, is to decide to stop the simulationwhen it reaches an arbitrary
number of, say, 10,000 innovations. Finally, on Fig. 2.4 the UML class diagram of
the model is illustrated.

2.5 Initial Conditions

The initial configuration we have chosen to keep in every experiment has therefore
beendefined the following rules to ensure a good representationof common structures
of settlement systems: The size of settlements follows a log-normal distribution.
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Fig. 2.5 Agents (settlements) and attributes at initial configuration in SimpopLocal

100 settlements size are initialized with a random demographic size vary from 38 to
133 inhabitants. The spatial repartition of the settlements assumes a Christallerian
pattern (according to Christaller,1 a theoretical pattern of central places has regular
spacing distances between settlement nodes of the same size category, the largest
settlement nodes having larger spacing distances than the smaller) (Fig. 2.5).

The network interlinking the settlements enables spatial interactions according
to the same Christallerian logic: small settlement nodes establish less remote con-
nections than the largest. Furthermore, at initial state, population of settlements is
considered at equilibrium regarding the available resources: the initial amount of
resource of each settlement is considered equal to its initial population.

2.6 Input

Although relatively parsimonious as a multi-agent system, SimpopLocal has a dozen
of parameters that have to be estimated for calibrating themodel. Some can be empiri-
cally evaluatedwith the help of historical data and knowledge,while it is very difficult
to give values to others (Table2.1). Those regarding the initial spatial distribution
and organization of settlements in the landscape can be approximated. The log-
normal distribution of the settlement sizes and the central place theory of Christaller
for the geographical distribution of locations are models that are widely used by

1Christaller’s central place theory (1933) considers cities as centres serving services of different
levels of rarity to a regional resident population according to a hierarchy of range and size of the
centres. As residents minimize the cost of access to services centres would exhibit regular patterns
on an homogenous plain. The simplest pattern is made of nodes located at the summits of hexagons
that are embedded in hexagons of larger areas designed for larger centres of the next upper level.
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Table 2.1 Parameters of the SimpopLocal model (Source: Schmitt (2014), p. 167)

Parameters Description

Rmax Maximum carrying capacity of a settlement
(measured in number of residents)

rgrowth Mean growth rate as in verhulst model

I nnovationImpact Impact of any innovation on available resources

PCreation Probability of creating an innovation in one
settlement

PDi f f usion Probability of diffusing innovation between
settlements

DistanceDecay Deterrent effect of distance on innovation
diffusion

I nnovationLi f e Time during which an innovation may diffuse

Max Innovation Total number of innovation generated before
end of simulation

archaeologists to describe their spatial data (Archaeomedes 1998; Johnson 1977;
Sanders 2012) including Neolithic archaeological sites (Liu 1996).

In SimpopLocal, the mean density of that landscape and the average size of each
settlement are representative of the usual orders of magnitude presented in these
works. A hundred settlements are distributed according to these two theories and
each settlement is initially composed of some 80–400 inhabitants. Several scholars
agree that an average annual growth of 0.02% is representative of the growth of
agrarian settlements in theNeolithic times (Bairoch 1985;Renfrew andPoston 1979).
The length of time required for a transition from agrarian to urban settlements is
estimated according to (Bairoch 1985; Marcus and Sabloff 2008) to about three
thousand years. We choose to operate our simulations on a four thousand years time
period for settlements ranging from one hundred inhabitants up to about ten thousand
inhabitants.

Because of a lack of empirical data, five parameters cannot be empirically approx-
imated and have to be estimated through simulation:

• Pcreation, the probability that an innovation emerges from the interaction
between two individuals of a same settlement.

• Pdi f f usion, the probability that an innovation is transmitted between two indi-
viduals of different settlements. We consider that the probability of diffusion is
greater than the probability of creation, which means that copying is easier than
inventing (Pennisi 2010) in the model.

• I nnovationImpact , the impact of the acquisition of innovation on the growth of
settlements.

• DistanceDecay, the deterrent effect of distance on diffusion.
• Rmax , the maximum carrying capacity of the landscape of each settlement
(measured in number of inhabitants).



2.7 Running the Model for Parameter Estimates: Calibration 31

2.7 Running the Model for Parameter Estimates:
Calibration

The principle of parsimony that led the development of SimpopLocal was applied
as well in designing a way for estimating possible values for each parameter of
the model. This original estimation process that leads as well to a huge qualitative
improvement in the validation process of the hypothesis of the model will be exam-
ined in detail in Chap.3. We only mention here which general line was followed
in order to make understandable the results of simulation that are recalled below.
As we lack of observed measurements for determining the possible values of most
of parameters of the model, our method of estimation is not exactly a ‘calibration’
exercise. It consists in determining which global subsets of parameters values are
leading to an emergence of a system of cities whose characteristics match at best
the stylized facts that were identified in Chap.1. A kind of machine learning method
is necessary in order to identify through many possible behaviours of the model,
the one which is able to correctly reproduce the expected results of simulation. The
values we will get for the parameters are thus not measured in absolute units, they
are abstract estimations and their significance relies on these measurements taken as
a whole, each parameter remaining associated to the others having to be considered
in relative terms. As two parameters involve probability distributions, the model is
stochastic, therefore the two techniques (by trial and error and by full plan) usually
used to calibrate a model are not suited to calibrate the SimpopLocal model (or any
multi-agents model in general). We adopted innovative methods of automatic explo-
ration of the patterns in the behavioural space of parameters which are developed
on the simulation platform OpenMole. In Chap. 3 we shall explain in detail how
genetic algorithms and grid computing are used to explore in a comprehensive way
the parameter space, as it was roughly defined at first by a plausible but large enough
variation domain for each parameter (Table2.2).

We briefly retrace here in a vocabulary that is accessible to non-specialists of
computing science how the method is working. An important first step in calibration
is to define an objective functionwhich is identified from the stylized facts describing
the period. It includes three quantifiable elements that must be obtained at the end
of simulation for the simulated system of cities:

• A log-normal distribution of settlement size
• The size of the largest aggregate settlement of about 10,000 inhabitants
• A total of 4,000 simulation time steps (equivalent to some 4,000 years).

The first requirement of the objective function reflects the essential hierarchical
property of any system of cities; the second acknowledges that in the political and
technological conditions of the time, groups of resident population over 2,000 inhab-
itants were very rare and a concentration of 10,000 could represent a major political
and economic capital of a kingdom or empire; the third condition is constraining the
model to be contained in a domain of growth regime for settlements that is plausible
in demographic terms for the post-Neolithic period: at that time, rapid urban growth

http://dx.doi.org/10.1007/978-3-319-46497-8_3
http://dx.doi.org/10.1007/978-3-319-46497-8_1
http://dx.doi.org/10.1007/978-3-319-46497-8_3
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Table 2.2 Variation domain for parameters after 500 millions simulations with SimpopLocal and
their precision with calibration profile algorithm (Source: Schmitt (2014), p. 203)

Parameters Initially assumed
variation domain

Variation domain
inside Pareto Front

Calibration validated
domain

Rmax [1; 40000] [9500; 11500] [10090; 10465]
I nnovationImpact [0; 2] [6.10.10−3; .10−2] [7.7.10−3; 8.4.10−3]
PCreation [0; 1] [4.0.10−7; 2.1.10−6] [1.1.10−6; 1.3.10−6]
PDi f f usion [0; 1] [3.10−7; 1.8.10−6] [6.7.10−7; 6.9.10−7]
DistanceDecay [0; 4] [0.2; 1.1] [0.66; 0.75]

rates were hampered by insufficient resource, high mortality rates due to bad sanitary
conditions and frequent catastrophes due to natural hazards or devastation caused
by war. Meeting these objectives entails contradictory dynamic trends. Moreover,
the need of (at least) a hundred replications of the simulations using the same set of
parameter values to handle the stochasticity and thewide range of variation attributed
a priori to five unknown parameters led us to use an evolutionary algorithm to solve
thismulti-objective optimization problem aswell asmassively distributed computing
for the exploration of the entire parameter space.

2.8 Simulation Results and Return on Observations

In total, 500 million of model runs were conducted to achieve the calibration of
parameters presented in Table2.2. This table shows next to each parameter in a first
column the hypothetical variation domain initially assumed, which was designed
deliberately very wide, and in a second column the possible interval of values as
it was reduced from the simulations to calibrate the model. This result does not
lead to a single value but provides a range of possible values for each parame-
ter, because a ’Pareto front’ establishes compromise between values that ensures the
multi-objective optimization function (that is explainedwithmore details in Chap.3).
A third column shows which precision gain was realized for each parameter by using
a more powerful algorithm that calculates the model’s sensitivity to variations of a
parameter at a time, all things being equal as to changes in the others. In addition,
we must remember that the values presented in Table2.2 are not independent mea-
surements, they are connected and so it is their entire configuration that must be
adapted when the model will be applied for a calibration on empirical, historical or
archaeological situation (Figs. 2.6 and 2.7).

Another novelty of this experience is that the method for exploring the behaviour
of the model is also a validation: we can establish to what extent the assumptions
chosen to implement the mechanisms of the model are both necessary and sufficient
to achieve the desired result—of course within the framework of the description

http://dx.doi.org/10.1007/978-3-319-46497-8_3
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Fig. 2.6 Initial and simulated distribution of city sizes. Source Schmitt 2014

Fig. 2.7 Comparing initial and simulated settlement distributions. Source Schmitt 2014

chosen for the selected model. This second result comes from the development of
a method called ‘calibration profiles’ (described in detail in Chap.3) that calculates
for each parameter the effect of its variation on the quality of the model, as fitted by
the objective function, ceteris paribus about the changes of other parameters. That
particular method led to the rejection of I nnovationLi f e parameter (lifetime of
innovation) which was not sufficiently constraining the development of the model.
The method also contributed to clarify the role of parameters through reducing their
domain of variation to a more precise interval that is both necessary and sufficient
to achieve the desired change (last column of Table2.2).

These results provided by the analysis of calibration profiles provide valuable
feedback on the modelling assumptions and urban theory that oversees the develop-

http://dx.doi.org/10.1007/978-3-319-46497-8_3
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ment of the model. The urban evolutionary theory that guided the construction of
SimpopLocal model and more generally all models of the Simpop family insists on
the concept of system, that is to say, relationship and interaction between the elemen-
tary entities (cities, villages or settlements points) that are components of the system.
Yet, this is the first time that the exploration of the simulation model demonstrates
that the mechanisms of interaction between the entities of the system are essential
to the production of an evolution similar to that of real systems, in the context of the
Simpop family of modelling (Pumain and Robic 2012).

Without these mechanisms describing spatial interaction, which in SimpopLocal
are controlled by Pdi f f usion and DistanceDecay, so without diffusion of inno-
vation between cities, according to a gravity principle, it is not possible to generate
urban growth dynamics that are representative of dynamics actually observed in real
systems. These results also show the importance of the role of space in structuring
and organizing the settlement system: without the effect of DistanceDecay para-
meter, which reduces the frequency of interaction with distance, changes in the sim-
ulated system are no longer representative of actual system developments. These first
evaluations of mechanisms will also be useful for the next versions and applications
of the SimpopLocal model. If this model is too simplified to be fully compliant
with current or former real settlement systems in its first abstract and parsimonious
version, the concepts generating the simulated processes can be reflected in certain
contexts (i.e. the proto-historic cities, for example) or archaeological theories such
as ‘peer polity interaction’ (Renfrew 1975).

Christopher Renfrew noticed how frequently the first small states were not born
in isolation but in cluster, with strong similarities in terms of size, social struc-
ture, material culture, etc. He also observed that political entities comparable in size
and organization (as the first forms of state organization) tended to emerge in the
same areas and evolve simultaneously. Moreover, archaeological evidence suggests
that these changes did not emanate from a single source of innovation, but emerged
contemporaneously in several interacting units.According to these remarkable obser-
vations, our theory do confirm the central explaining role of the mechanism of
exchange between settlement sites and describe the interaction processes as essential
in urban development and social change.

The SimpopLocal model, whose dynamic is grounded in social and spatial inter-
action, could be used as a core model for testing this theory by simulation.

Perspectives of the application of complexity theory and methodological means
to construct models (agent-based modeling) underline possible implications for the
study of some theoretical issues of scientific research in archeology. The process of
model building on the basis of theoretical concepts itself reveals gaps in our data.
Within the archeological record we lack data for some processes which must be
supplemented with estimates (Turchin and Gravilets 2009).
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Chapter 3
Evaluation of the SimpopLocal Model

Abstract The SimpopLocal model exposes 6 free parameters that cannot be set
using empirical data. This chapter presents how to evaluate SimpopLocal in spite of
these degrees of freedom. A first evaluation establishes whether the model has the
capacity to produce acceptable dynamics. To achieve this evaluation, the quality of
the simulated dynamics is made explicit using a quantitative analysis. Based on this
quantitative evaluation, an automated calibration algorithm is designed using a state-
of-the-artmulti-objective genetic algorithm.The results show that themodel is able to
produce acceptable dynamics. A second evaluation exposes the contribution of each
free parameter to the capacity of the model to produce these acceptable dynamics.
A novel sensitivity analysis algorithm called calibration profile is then applied. The
results of this analysis show that the model can be simplified by removing one
superfluous mechanism and one superfluous parameter and that all the remaining
mechanisms are mandatory in the model and all the remaining parameters can be
better constrained by narrowing down their definition domains.

3.1 Quantitative Evaluation

As exposed in the previous chapter, the SimpopLocal model includes 6 free parame-
ters. To evaluate this model, a design of experiment in the space of its parameters
should be carried out. In order to find out if the model works as expected the space of
parameters should be explored extensively. To design the exploration of SimpopLo-
cal several aspects have to be taken into account: 1/ which stopping criterion should
be used? 2/ how to measure the quality of the computed solution? 3/ how to sample
the space of parameters?

3.1.1 Stopping Criterion

In order to automate the exploration and to test a large number of configurations, a
stopping criterion should be established. To do so, two kinds of constraints have to
be taken into account: thematic constraints and technical ones.
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SimpopLocal is an attempt to identify some of the mechanisms at works during
the transition from a system of small settlements before agriculture advent (80–400
inhabitants per settlement), to a system of urban settlements (up to 7000 or 10,000
inhabitants for the bigger settlement). We cannot capture this complex transition
into a single realist and unique history, therefore we decide to focus on the capacity
of SimpopLocal to generate plausible dynamics with carefully chosen constraints
(parameters,mechanisms, initial condition). To do so, the initial size and organization
of system of settlements are set using common values and knowledge taken from
specialized studies on this subject. We choosed to study the growth of 100 initial
settlements with population size generated using the widely used log-normal and
we used the central place theory (Christaller 1933) to distribute them geographically
(Archaeomedes 1998; Johnson 1977; Liu 1996; Sanders 2012). Then we simulate
the urbanization of the initial agrarian system of settlements in about four thousand
years (Bairoch 1985; Marcus and Sabloff 2008). Based on this empirical values, we
decided that SimpopLocal should be evaluated given its first 4000 simulation steps,
which matches 4000years of evolution of the system of cities.

On the technical aspect, we choose to represent innovations as autonomous objects
into SimpopLocal. Choosing an object representation easily ensures the tracking of
each innovation diffusion during simulation. Even more important, the acquisition
process ensures that an innovation does not already exist in this settlement before
recopy (i.e. adoption by the same settlement).Oneway to prevent recopyof an already
existing innovation consist to store into each innovation the identification number of
original innovation (before any copy). The number of innovation is therefore only
growing during a run. These innovations are represented as objects which consume
memory and increase the computation complexity of the model. For high values
of the parameter pCreation this number of innovations can get arbitrary high.
It would slow down the model execution and fill the computer memory. To avoid
this situation we decided to establish a technical stopping criterion, by stopping
the simulation when the number of innovation reaches 10,000 innovations. With
this limit the model runs in approximately 1 second per simulation. This stopping
criterion is purely technical and we seek to produce acceptable dynamics despite this
computational limitation.

3.1.2 Expectations

Now that stopping criterion have been established, we can define a design of experi-
ments to explore the parameter space of SimpopLocal. The widely used full factorial
design of experiment is unpractical in our case. Indeed, using 10 levels for each of
the 6 free parameters of SimpopLocal would produce 1 million parameter sets to
evaluate. We will see bellow that this quantity of computation is affordable using
modern distributed computing architecture, however checking 1 million dynamics
visually is impossible.
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The evaluation should be automated. The exploration of the space of parameters
should directly produce a small set of parameter values which produce “expected”
dynamics.We should first quantify what is an expected dynamic. To do so, we design
three objectives to evaluate a single run of SimpopLocal (the lower the objective the
better the dynamic):

• The objective of distribution, which quantifies the ability of the model to pro-
duce settlement size distributions that fit a log-normal distribution. To compute
this objective, we evaluate the outcome of each simulations using a 2-sample
Kolmogorov–Smirnov test (the deviation between the simulated distribution and a
theoretical log-normal distribution having the same mean and standard deviation).
Two criteria are reported, with value 1 if the test is rejected and 0 otherwise: the
likelihood of the distribution (the test returns 0 if p-value >5%) and the distance
between the two distributions (the test returns 0 if D-value <D1). In order to sum-
marize those tests in a single quantified evaluation, we add the results of the two
tests (the result of the test may be 0, 1 or 2 depending on the fit of the settlement
size distribution to a log-normal).

• The objective of population, which quantifies the ability of the model to generate
large settlements. The outcome of one simulation is tested by computing the devi-
ation between the size of the largest settlement and the expected value of 10,000
inhabitants:
|(population of largest settlement − 10,000)/10,000|.

• The objective of simulation duration, which quantifies the ability of the model to
generate expected configurations in a suitable length of time (in simulation steps).
The duration of one simulation is tested by computing the deviation between the
number of iterations of the simulation and the expected value of 4000 simulation
steps:
|((simulation duration − 4000)/4000|.

3.1.3 Handling the Stochasticity

SimpopLocal is a stochastic model, meaning that its outputs are probability distri-
butions. To estimate the quality of the dynamics produced by a stochastic model
for a given set of parameters, the model should be run several times or replicated
using independent random number streams. The results of the replications are inde-
pendent realizsations of the output random variates of the model. The quantitative
expectations for this model should then be expressed as descriptive statistics on the
output distributions.

In our case we want to find suitable dynamics which are robust to stochasticity.
It means that we seek parameter values such as the model dynamics gets as close as
possible to the three previously defined objectives as often (for as many realizations

1Computed with α = 1.36.



40 3 Evaluation of the SimpopLocal Model

of the dynamics) as possible. To take into account the stochasticity of the model we
define the three new evaluation objectives as follows:

• the aggregated distribution objective: the mean of the distribution objective among
the replications,

• the aggregated population objective: themedian of the population objective among
the replications,

• the aggregated duration objective: the median of the duration objective among the
replications

Note that the scale of these objectives are independent from the number of repli-
cations. It means that an evaluation based on n replications can be quantitatively
compared with another based on m replication. This property will be useful for the
following of this chapter.

3.2 Automated Calibration

3.2.1 Optimization Heuristic

Now that we have defined a quantitative evaluation of the model dynamics, we can
sample the input parameter space to test if the model is able to produce suitable
dynamics. Several methods are available to sample the space of parameters. They
can can be split in two categories:

• the a priori samplings methods sample the space of parameters once and for all and
then evaluate the model for each of the sampled points. In this category, the regular
lattice is often used by modellers. Other samplings, with better space coverage are
available such as the Latin Hypercube Sampling2 or the Sobol Sequence3 (for a
full review on parameter space sampling report to Kleijnen 2007). These methods
are simple to carry on and often allow rigorous statistical analysis of the results.
However, they might be inefficient at finding acceptable dynamics when very few
knowledge is available on the possible range of the input parameters.

• the iterative samplings take into account the already computed evaluations in order
to generate more samples. This category contains instance calibration processes
based on optimization algorithms (Stonedahl 2011), approximate Bayesian com-
putation (Beaumont 2010; Lenormand et al. 2012), Calibration Profiles (Reuillon
et al. 2015), Pattern Search Exploration (Chérel et al. 2015).

For SimpopLocal we have chosen to calibrate it through an iterative process based
on a genetic algorithm. Since we have 3 objectives we used the well-established
NSGA2 multi-objective optimization algorithm (Deb et al. 2000) using the 6 free

2https://en.wikipedia.org/wiki/Latin_hypercube_sampling.
3https://en.wikipedia.org/wiki/Sobol_sequence.

https://en.wikipedia.org/wiki/Latin_hypercube_sampling
https://en.wikipedia.org/wiki/Sobol_sequence
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Fig. 3.1 NSGA 2 step by step procedure, inspirated by original schema from Deb et al. (2000)

parameters of SimpopLocal as the genome of the algorithm and the 3 objectives as
the multi-objective fitness of the algorithm.

As represented on Fig. 3.1, the NSGA-2 algorithm computes the evolution of a
population of size 2 ∗N called R. At the first iteration of NSGA-2 (I0), the algorithm
is initialized a population (P0) of randomly generated solutions. Starting from I1 the
algorithm loops until convergence, performing the following steps:

• In step 2, the population (Rt) is ranked using non-dominated sorted (NDS) algo-
rithm.4 This algorithm uses the Pareto dominance to compute so-called fronts
(a definition of Pareto dominance, and a detailed example of front computation is
given later in this section). It groups individuals of the population by Pareto front
F1...n using a multi-objective fitness. The individuals that belongs to front F1 are
dominated by no individual in the populations Rt . The individuals of front F2 are
dominated by no individual in the population RT − F1, the population where the
individuals of F1 are excluded ... and so forth.

• In step 3, the NSGA-2 algorithm computes a new population from RT by selecting
the best individual of RT . The algorithm first adds all the individual of F1, then the
ones of F2, the ones of F3 ... It stops just before when adding an additional front
in the population make it bigger than N individuals.

• In step 4, the algorithm adds a sub-part of the next front in order to complete the
new population (it should reach a size of exactly N individuals). The individuals
of a front cannot be discriminated by their objective values (by definition they
constitute compromise solutions), therefore NSGA-2 uses another ranking based

4Invented by Goldberg (1989) but first implemented by Deb in NSGA (Deb et al. 2000).
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on a diversity metric called the crowding distance operator. This selection based
on a diversity metric helps maintaining a diversity of solutions in the population
and not to converge too early in a local minimum. This population of size N is
called Pt+1.

• In step 5, a set N parameter values (or genomes) is generated is generated by
recombining and mutating individuals taken at random from Pt+1. This set is
called Qt+1.

• In step 6, this new offspring population Qt+1 is evaluated by running the fitness
function. Each individual gain a new vector of value which contain evaluation for
each objective function.

• In step 7, the new Qt+1 and already existing population Pt+1 are merged into
population Rt+1. Some convergence criterion is then tested. If the convergence has
not been reached, the algorithm go to steps 2 otherwise it stops and returns Rt+1.

In this type of algorithm the best individuals are preserved in the Rt population
used for fitness evaluation. This property is called elitism in evolutionary algorithms
literature.

NSGA-2 heavily relies on the computation of the successive Pareto fronts. A
Pareto front captures a group of individuals who are non-dominated by other indi-
viduals in a population. Classic definition of dominance say that “an element x1
dominates (is preferred to) an element x2(x1 � x2) if x1 is better than x2 in at least
one objective function and not worse with respect to all other objectives” (Weise
2011).

For instance in the Table3.1, if we consider that best individuals are individuals
which minimize value on objective function f1 and f2, we can see that Id is better
than Ic on f1, but Ic is better than Id on f2. Therefore they are compromise solutions:
none of them dominates the other. The set of individuals which are not dominated by
any other individual of the population constitutes the Pareto front of the population.
In this example, the Pareto front (which contain all non-dominated individuals) is
{e, d, c, b, a}.

At step 4 of the algorithm, theNon-Dominated Sorting algorithm (NDS) computes
successive fronts Fi...n by iteratively removing non- dominated individuals {I∅} from
populationP. In the example of Fig. 3.2, the frontF2 is computed by removing all non-
dominated individuals (i.e. individuals in F1) from population and then computing
the Pareto front of this population. In this example we remove {e, d, c, b, a}, so the
new Pareto front of P is equal to {f , h, j, k, l}.

3.2.2 Adaptation of NSGA2 to a Stochastic Model

A problem when using genetic algorithms to calibrate simulation models is that
some of them do not cope well with stochasticity. This is especially the case for
algorithms of type μ + λ (such as NSGA2), which preserve best solutions between
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Table 3.1 Example of fitness value computed using NDS fitness algorithm and a population of
individuals evaluated on two objective function f1, f2
Individuals f1 f2 Dominated by Fitness value

a 3.5 1 ∅ 1

b 3 1.5 ∅ 1

c 2 2 ∅ 1

d 1 3 ∅ 1

e 0.5 4 ∅ 1

f 0.5 4.5 {e} 2

g 1.5 4.5 {d, e, f, h} 3

h 1.5 3.5 {d} 2

i 2 3.5 {c, d, h} 3

j 2.5 3 {c, d} 2

k 3.5 2 {a, b, c} 2

l 4.5 1 {a} 2

m 4.5 2.5 {a, b, c, k, l} 3

n 4 4 {a, b, c, d, e, h, i,
j, k, o}

5

o 3 4 {b, c, d, e, h, i, j} 4

Fig. 3.2 Building steps example for NDS algorithm front computation with two objective function
optimization. Algorithm produces five fronts, F1 to F5

the generations. In that kind of optimization the value of a solution is only estimated
and not computed exactly. They can therefore be overvalued or undervalued (the
quality of a solution is estimated with a significantly greater or a lower value than
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the one that would have been estimated given an infinite number of replications).
Undervalued solutions are not very problematic for μ + λ genetic algorithms, they
might be discarded instead of being kept, but the algorithmhas a chance to retry a very
similar solution later on. Conversely, the overvalued solution are very problematic
for genetic algorithms, since the genetic algorithm might keep overvalued solution
in the population of good solutions (because they have falsely been evaluated as
good solutions) and generates new offspring solutions from them. This behaviour
can greatly slow down the convergence of the calibration algorithm and even make it
converge toward set of parameters producing very unstable output dynamics which
are very likely to produce false positive good solutions.

To reduce the influence of the fitness fluctuation, the most commonly used
approach is called “resampling”. It consists in running several replications for each
fitness evaluation. The computed quality for a set of parameters is then an estimation
given a finite number of replications of the fitness computation. However, to limit
the computation time taken to evaluate the quality of a single set of parameters dur-
ing the calibration process, the number of replications is generally limited to a level
which constitutes a compromise between the computation time taken to evaluate one
set of parameters and an acceptable level of noise for the quality. Any number of
replications, even very high, still implies that some solutions are overvalued with
a non-negligible probability given that the fitness function is evaluated millions of
times.

Othermethods have been developed to optimize stochastic functions using genetic
algorithms. Some of them are based on using the history of the genetic algorithm to
estimate the probability distribution of the fitness (Sano and Kita 2002), others are
based on the differences between the parents and the offspring (Tanooka et al. 1999)
and others propose to use a partial order based on statistical tests (Rudolph 2001) ...
Even if these methods seem statistically sound they complicate significantly the
optimization algorithm, they are often based on some assumptions that are hard or
impossible to verify (such as the invariance of the noise distribution over the fitness
space) and they add parameters to the algorithm that are difficult to tune.

To overcome these limitations we have developed an auto-adaptive strategy to
handle stochastic fitness functions in NSGA2. It is loosely related to the idea of
resampling, for which only the best solutions are more precisely evaluated (pre-
sented in Branke 1998). In our method, called “stochastic resampling” we propose
to evaluate the individual with only 1 replication and then to resample the individu-
als of the population with a fixed probability at each generation of the evolutionary
algorithm. For instance, at each generation 90% of the individual offspring genomes
are new genomes and 10% of the offspring genomes are already evaluated genomes
randomly taken in the current population for which the algorithm computes one
additional replication. The replications of each individual are stored in a vector of
replications. The fitness of an individual is computed using (for instance) the median
of each objective stored in the replication vector. The intuition is that in μ + λ
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genetic algorithms, best individuals survive several generations and therefore are the
most likely to be resampled given that each individual has a fixed chance of being
resampled at each generation. However, this fixed probability of resampling is not
sufficient by itself to get an auto-adaptive algorithm. With this mechanism alone,
well- evaluated solutions are very likely to be replaced by overvalued ones (new
solution with a few “lucky” replications). To compensate this bias, we add techni-
cal objectives in NSGA2 in order to maximize the number of samples of a solution
to the multi-objective optimization problem. Therefore, the number of replications
is taken into account in the Pareto compromise elitism of NSGA2: solutions with
many replications are kept even if some solutions are better on the other objectives
but have been evaluated with less replications. By doing so, we let themulti-objective
optimization algorithm handle the compromise between the quality of the solutions
and their robustness. This method adds only two new parameters: 1/ the probability
of resampling an individual at each generation 2/ the max number of samples for
an individual to limit the memory used to store an individual. We propose to store
the sample in a FIFO with a fixed size, therefore new samples are always taken
into account even if the maximum number of replications has been reached for a
given individual. This method has been implemented in the library for evolutionary
computing: MGO5 and has not been published yet.

3.2.3 Experimental Setup

To carry on the huge computation load required by the calibration of a stochastic
multi-agent model using a genetic algorithm, we distributed it on the EGI,6 a word-
wide computation grid. To do so we used the framework OpenMOLE for distributed
numerical experiments on simulation models7 (this framework is described in more
detail in the Chap.6).

A classical way to distribute genetic algorithm is the technique known as the
‘island model’ (Belding 1995). The classical island model consists of instantiating
permanent islands (isolated instances of an evolutionary algorithm) on many com-
puters and organizing the migration of solutions between those islands. The EGI grid
is a worldwide batch system on which organizing direct communications between
islands running on multiple execution nodes is very challenging. Thus, we adapted
the classical island model proposed in OpenMOLE to still benefit from the EGI
architecture.

5https://github.com/openmole/mgo.
6http://www.egi.eu.
7http://www.openmole.org.

http://dx.doi.org/10.1007/978-3-319-46497-8_6
https://github.com/openmole/mgo
http://www.egi.eu
http://www.openmole.org
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In this adapted version of the islandmodel, a central population of 200 solutions is
maintained on a central computer that orchestrates the submission of the computing
jobs on the grid. Each job computes the evolution of the population of an island,
which is an independent instance of NSGA2 started on a snapshot of the central
population of 200 individuals at the time of submission. The ‘island job’ life cycle
is managed by the EGI. Each job is submitted to the EGI and starts running when
a slot becomes available on one of the data centres aggregated by the grid. When it
starts running it is configured to run for 15min. Using this distribution scheme, 1000
concurrent jobs are maintained (submitted + running) on the grid at any time. The
OpenMOLE script for this experiment is exposed here.8

We executed 20,000 thousand islands of 15min on the grid, after which we
observed that the genetic algorithm is converged. An evolutionary algorithm is
declared ‘converged’ when it makes no further improvements in the search for
good solutions. One of the best metrics for measuring the convergence of the multi-
objective optimization algorithm that is currently available is the stagnation of the
hypervolume. The hypervolume measures the volume of the dominated portion of
the objective space and its stagnation indicates that the algorithm has converged. To
test if it is the case for our calibration we used the library MGO9 to compute the evo-
lution of the hypervolume. We considered only the solutions that are robust enough
(estimated by the stochastic resampling strategy of the genetic algorithm with the
maximum number of replications: 100 replications) and we used reference points
(nadir) with the coordinates: distribution = 2.0, population = 2.0, simulation dura-
tion = 2.0 (the script to compute the hypervolume is available online10). Figure3.3
shows the evolution hypervolume of the Pareto with the number of executed islands.
It stagnates after 7000 islands have been executed.

3.2.4 Results

At the end of the evolution we get a file containing: 200 parameter values, the value
of the three objectives for each of this points and the number of the samples (or
replications) which have been taken into account in the computation of the objective
values. In the stochastic resampling strategy candidate solutions are first evaluated
with few replications and then promising solutions are resampled (evaluated with
more replications), therefore in the resulting file not all solutions have been evaluated
with the maximum number of 100 replications. We decide to consider only the
most robust solutions in our result analysis (119 solutions among the 200 solutions
proposed by the algorithm have been evaluated based on 100 replications). Among
these robust solutions, 27 of them produce low (>0.1) objective values for the each of

8https://github.com/Geographie-cites/spinger-simpoplocal.
9https://github.com/openmole/mgo.
10https://github.com/Geographie-cites/springer-simpoplocal.

https://github.com/Geographie-cites/spinger-simpoplocal
https://github.com/openmole/mgo
https://github.com/Geographie-cites/springer-simpoplocal
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Fig. 3.3 Hypervolume of the Pareto front

the 3 objectives. The fact that the 3 objectives can take be fulfilled altogether means
that these objectives are not mutually exclusive (they are compatible).

The figure exposes a run of the model for the set of parameters: rMax =
10134.5564655276, innovationImpact = 0.0100011820347467, distanceDecay =
0.937264929710603, pCreation = 0.00000119999472951903, pDiffusion
= 0.000000879838251240765, innovationLife = 1529 whose fitness has been eval-
uated to ksValue = 0.015, deltaPop = 0.0129611448, deltaTime = 0.002875.

For this set of parameters, the evolution corresponds to what is expected from
the model: a progressive and continuous process of hierarchical organization of the
settlement system (the slope of the linear fit of the rank–size distribution shifts from
0.2 to 0.9 in 4000years for a maximum reached size of about 10,000 inhabitants).

Further analysis show that this result is quite robust to stochasticity as shown by
the low variability of the recorded final state from one simulation to another exposed
on Fig. 3.4.

3.3 Calibration Profiles

In the previous section we have used automatic calibration process based on multi-
objective genetic algorithms (Schmitt 2014). Nevertheless, this method produces a
reduced set of candidate parameter values that represent optimal trade-off with regard
to several model quality criteria. The result of the calibration process is thus solely
that the model can reproduce the data with a given precision. It does not say anything
about how often parameter sets lead to realistic behaviours, and how each parameter
will change the behaviour of the model. For instance, it is often interesting to know
when some parameter values would prevent the system to reach a realistic behaviour,
rather than only knowing a singles set of “optimal” parameter values.
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Fig. 3.4 Evolution of the rank-size distribution during a simulation of one of the best calibrated
parameter settings

3.3.1 Algorithm

To compute a more global view of the parameter space, we have therefore designed
a novel method that exposes the sensitivity of a single parameter on the calibration
of a model independently of the other parameters (Reuillon et al. 2015). Given a
function which computes a single scalar value depicting a calibration error for the
model, the calibration profile algorithm computes the lowest calibration error that
can possibly be obtained when the value of a given parameter is fixed and the others
are free (Figs. 3.5 and 3.6). It computes this minimal error for many values of the
parameter under study. The value of the parameters are sampled all along its domain
of definition to produce a so-called calibration profile. For each sample value, the
value of the remaining parameters are optimized in order to find the lowest possible
calibration error. The profile can then be drawn on a 2-dimensional chart that depicts
the influence of the parameter under study on the model calibration.

To produce such a profile, a naive approach would consist in executing an entire
calibration algorithm for each value of the parameter under study. Current auto-
mated calibration algorithms are too computationally intensive tomake this approach
tractable in practice. To tackle this problem we have designed an algorithm which
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Fig. 3.5 Illustration of the calibration profile (CP) algorithm (Reuillon et al. 2015)
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Fig. 3.6 High level representation of the calibration profile (CP) method (Reuillon et al. 2015)

computes the numerous points composing a calibration profile altogether (this algo-
rithm has been inspired by the recently published MOLE method (Mouret 2013;
Clune et al. 2013), which computes two dimensional maps of phenotype landscapes
using evolutionary algorithms).

This new algorithm has been designed in the framework of evolutionary algo-
rithms. The Fig. 3.5 illustrates the progress of this algorithm through the example of
the computation of a 9-points profile along x1 of a function f (x1, x2). In this example,
the function f represents a 2-parameters model: x1 and x2 and f (x1, x2) represents the
calibration error of the model. In the step 1 the algorithm randomly samples points
(random values of x1 and x2) and computes f (x1, x2). In the step 2, the algorithm
divides the definition domain of x1 in 9 disjoint even intervals (called niche) and
keeps only the sampled point with the lowest f (x1, x2) in each of these niches (this
constitutes the elitism stage). The points that have been selected constitute a first
approximation of the calibration profile of the model f along x1. In step 3 new sam-
ples (x1, x2) are generated by mutating the points in the current approximation of the
calibration profile and f (x1, x2) is evaluated for each of these new points. The newly
evaluated samples are merged with the existing ones and the algorithm iterates to the
step 2. This iteration stops once a given stopping criterion is met after step 2. The
projection of the last selected points along x1 constitutes an approximation of the
theoretical continuous profile (step 4). A detailed description of the algorithm can
be found in Reuillon et al. (2015).

The calibration profile is a μ + λ genetic algorithm. It suffers from the same
problem regarding stochasticity as the ones described in the previous section. To
overcome this shortcoming, we have adapted the “stochastic resampling” strategy
to this algorithm (described in the previous section). The deterministic version of
CP keeps one single individual for each niche (or interval). To enable the stochastic
resampling for CP, we changed this algorithm and made it keep a Pareto front in
each niche (by applying the elitism strategy of NSGA2 in each niche). This Pareto
front constitutes a compromise betweenmaximizing the number of replicationswhile
minimizing the calibration error. Each Pareto front (in each niche) converges towards
solutions which are both good and properly evaluated (robust to stochasticity).
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3.3.2 Guide of Interpretation

A calibration profile is a 2D curve with the value of the parameter under study repre-
sented on the X-axis and the lowest possible calibration error on the Y-axis. To ease
the interpretation of the profiles we propose to define an acceptance threshold on the
calibration error: under this acceptance threshold the calibration error is considered
sufficiently satisfying and the dynamics exposed by the model acceptable, over this
acceptance threshold the calibration error is considered too high and the dynamics
exposed by the model are considered unacceptable.

The computed calibration profiles may take very diverse shapes depending on
the effect of the parameter of the model dynamics, however some of this shapes
are recurrent. The most typical shapes are shown on the Fig. 3.7. They have been
discriminated according to the variation of the values of the profile compared to the
threshold value:

• The shape 1 is exposed when a parameter is restricting with respect to the calibra-
tion criterion and when the model is able produce acceptable dynamics only for
a specific range of the parameter. In this case a connected validity interval can be
established for the parameter.

• The shape 2 is exposed when a parameter is restricting with respect to the cal-
ibration criterion, but the validity domain of the parameter is not connected. It
might mean that several qualitatively different dynamics of the model meet the
calibration requirement. In this case model dynamics should be observed directly

Fig. 3.7 Calibration profile (CP) algorithm (Cottineau et al. 2015)
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to determine if the different kinds of dynamics are all suitable or if some of them
are mistakenly accepted by the calibration objective.

• The shape 3 is exposed when the model is not possible to calibrate. The profile
doesn’t expose any acceptable dynamic according to the calibration criterion. In
this case, the model should be improved or the calibration criterion should be
adapted.

• The shape 4 is exposedwhen a parameter does not restrict themodel dynamicswith
regards to the calibration criterion. The model can always be calibrated whatever
the value of the parameter is. In this case this parameter constitutes a superfluous
degree of liberty for the model since its effect can always be compensated by a
variation on the other parameters. In general it means that this parameter should be
fixed, that a mechanism of the model should be removed or that the model should
be reduced by expressing the value of this parameter in function of the value of
the other parameters.

3.3.3 Result Analysis

The calibration profile algorithm makes it possible to evaluate the impact of each
parameter of SimpopLocal individually on the capacity of the model to pro-
duce acceptable dynamics. In Sect. 3.2, we have shown that the 3 objectives used
for the calibration (distribution, duration and population) can be fulfilled alto-
gether. To apply the calibration profiles to SimpopLocal, we consider an aggre-
gated evaluation function f defined as the maximum value over the 3 objectives
(f = max(distribution, duration, population)). If this value is low then a model
presents acceptable dynamics. To analyse the produced results, we have established
that only input parameters leading to values of f of less than 0.1 of error are con-
sidered valid. Indeed, the empirical data and theoretical knowledge that led to the
definition of the objective function are not precise enough to justify a more thorough
analysis of the model. This threshold is largely exceeded for some parameter values,
however rendering this threshold of acceptability explicit enables the definition of
credible bounds for each of the free parameter of the model. These bounds define a
validity domain of each of the parameters.11

The Fig. 3.8 exposes the calibration profile for each of the parameter of Sim-
popLocal. Several interesting conclusions can be drawn by interpreting them:

• the profile for innovation life exposes that this profile has no significant impact
on the capacity of the model to produce acceptable dynamics. This parameter
pilots the innovation deprecation mechanism. When innovationLife = 4000 that
the innovation deprecation time is longer than the simulation time. The facts that
we can calibrate the model for this particular value indicates that the deprecation

11Note that the profile algorithm iteratively refines the computed profiles from high values toward
lower ones through through an iterative process, therefore the proposed bounds are more restrictive
than the exact ones.
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Fig. 3.8 Calibration profiles

mechanism is useless in order to reproduce acceptable dynamics and that themodel
can be simplified by removing it.

• Theprofile for distanceDecay exposes that the themodel cannot be calibratedwhen
the value of this parameter is lower than 0.15 or greater than 1.30. The parameter
distanceDecay introduces a decaying effect of the distance between settlements
on the diffusion of innovations from one settlement to another. When it is high,
settlements are isolated from each other (and unable to exchange innovations),
when it is low settlements can all exchange equally independently of their respec-
tive distances. This profiles shows that the spatial heterogeneity implemented in
the model is mandatory to produce acceptable dynamics.

• The profile for rMax exposes that the model only produces acceptable dynamics
when rMax is close to 10,000 and a best value for rMax = 10,277. The calibration
objective for the size of the biggest settlement has been set to 10,000 inhabitants.
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When Rmax is lower than 10,000 it is by construction impossible for the model
to reach the 10,000 population objective. Low values of this parameter cannot
achieve acceptable calibration errors. Surprisingly the calibration algorithm is not
acceptable dynamics when Rmax is above 10,500. It indicates that this mechanism
is necessary to produce acceptable dynamics and reaching settlements of a size
matching empirical evidences.

• The 3 other profiles exposes only 1 or even 0 values bellow the acceptability thresh-
old. It means that there have not been observed at the right scale (the parameter
range is too broad). In the calibration experiment in Sect. 3.2, we have observed
that the model exposes acceptable dynamics when they are close to 0. There-
fore, we reduced the range of exploration of these 3 parameters and compute new
calibration profiles.

The Fig. 3.9 exposes profileswith narrowed ranges for the 3 parameters pCreation,
pDiffusion and innovationImpact. From this 3 curves we can deduce that:

• the validity domain of pCreation is between 0.4 10−6 and 2.2 10−6. For low values
of pCreation the model cannot be calibrated. The innovations are generated too
slowly to engender a sufficient growth (whatever the value of the other parameters
can be). For high values of pCreation the system races and growth is too fast.

• the validity domain of pDiffusion is between 0.2 10−6 and 2.1 10−6. A very inter-
esting aspect of this profile is that low values of pDiffusion prevent the model
from producing acceptable dynamics. Noticeably when pDiffusion = 0 it disables
entirely the diffusion mechanism of the model. At this particular point the calibra-
tion error is unsatisfying, thus this profile shows that the diffusion of innovation
mechanism of the model is mandatory in order to produce realistic behaviours.

• the validity domain of innovationImpact is between 6 10−3 and 1.2 10−2. Under
the lower bound, the impact on the settlement growth of the innovation is too low
and the dynamic is too slow to reach the calibration objectives. On the contrary,
when innovationImpact is too high the growth of the settlements is too fast to
match credible dynamics (whatever the value of the other parameters can be).

3.4 Conclusion

This chapter exposes the evaluation the SimpopLocal model through a novel method-
ology built on top of the quantitative evaluation of themodel dynamics. This method-
ology is generic and can be reused to other models as long as a quantitative evaluation
of the model dynamics can be designed. Furthermore, all the algorithms are avail-
able in a reusable form in the free and open-source platform OpenMOLE,12 which
is presented in the Chap.6 of this book.

The evaluation work presented in this chapter is often perceived as taking place
after the modelling process, once the model is finished. On the contrary, we believe
that this evaluation work should be carried all along with modelling process, from

12www.openmole.org.

http://dx.doi.org/10.1007/978-3-319-46497-8_6
www.openmole.org


3.4 Conclusion 55

Fig. 3.9 Narrowed calibration profiles

the very early stages. From a conceptual point of view, it has the great advantage
of modelling the expectation along with the model mechanisms. From a technical
point of view, the quantitative evaluation can guide the modelling choices. Indeed
by evaluating face-to-face candidate mechanisms, it is possible to determine which
ones are the best fitted to reproduce such or such aspect of the expected dynamic.
The next chapter extends this evaluation methodology and proposes an modelling
framework guided by the evaluation process.
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Chapter 4
An Incremental Multi-Modelling Method
to Simulate Systems of Cities’ Evolution

Abstract Explaining the evolution of urban systems at large spatio-temporal scales
is uneasy. Processes are frequently unobserved empirically and equifinality is a
challenge for any generative explanation models. We try to address the causation
challenge in urban modelling by proposing a multi-modelling framework for the
comparison of several model structures. Each structure represents a combination of
mechanisms translating alternative or complementary hypotheses about the processes
at play. This approach implies that the conception, implementation and evaluation of
the model(s) integrate a diversity of mechanisms. Their contribution to the explana-
tion of urbanization is evaluated in time and space by confrontingmodels to empirical
data through an interactive visualization platform.We argue thatmulti-modelling can
provide an alternativeway to account for the possible causes generating observed pat-
terns, between traditional approaches such as 1/simple models focusing on a single
cause (as is often the case for proving a theory) or 2/very complex models includ-
ing all possible mechanisms at once (as it might prevent from distinguishing their
individual contribution).

4.1 Introduction

Given the complexity of ‘real’ urban systems, our plea in the introduction was for
parsimonious but fully explored models, and for multiple models which account for
the equifinality playing in the model (several mechanisms can produce the observed
pattern) as well as in reality (without historical and detailed information on the actual
processes atwork,weonly have theoretical hypotheses on how tomodel cities). These
reasons argue for a model-building framework which allows multiple modules to be
assembled and combined, each of which represents a particular hypothesis as to the
urban dynamics needed tomodel a particular systemof cities at a particular time. This
framework should allow the different structures ofmodels to be evaluated in the same
way and consequently compared in their ability to simulate an observed trajectory of
cities’ growth. Because of the diversity of possible factors and theories for explaining
the diversity of cities’ trajectories, we need a visualization that displays the same
kind of information for different model structures and city attributes. The interactive
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feature provided by an online (automated) application serves this purpose quite well,
andmakes it possible for the user to explore different aspects ofmodel resultswith the
same visualization design, thus easing the process of model comparison. Moreover,
the exploration of a variety of results and model outputs is guided by a selection of
representations used in geography to compare systems of cities, to analyze models
and their residuals.

This chapter describes a multi-modelling method that was developed and applied
to the system of Soviet and post-Soviet cities (but could be later transferred to any
system of cities for which we have historical data). We first present the theoreti-
cal, methodological and technical framework of multi-modelling (Sect. 4.2), before
detailing the resulting family of models that was developed to simulate Soviet and
post-Soviet city growth (Sect. 4.3). Section4.4 presents the results obtained and the
geographical knowledge that one can draw from such a methodology. Section4.5
describes the application built to explore and communicate these results interactively
and online. Section4.6 concludes.

4.2 Methodological and Technical Framework
for Multi-modelling Systems of Cities

In this section, we review the theories competing for the explanation of the evolution
of systems of cities (or their stylized facts).We also review previous attempts to build
multi-modelling frameworks and expose our own approach.

4.2.1 Complementary and Competing Theories

As stated in the first chapter, systems of cities give rise to very robust regularities over
time and space. For instance, the Zipf’s distribution of city sizes has been described
and studied for almost a century (Lotka 1925 and Nitsch 2005 for a meta-analysis).
This ‘mystery’ (Krugman 1996a) has fostered a wide range of possible explanations,
from random processes to economic, social and geographical rationality. If we focus
on causal mechanisms (thus excluding random generative models), we can identify
five broad categories of explanations, reflecting one or several theories to account
for the evolving sizes, locations and functional specialization of cities within a given
system (Pumain et al. 2006; Schmitt et al. 2015; Cottineau et al. 2015b):

1. Spatial interactions and the diffusion of innovations (Pumain 1997; Pumain
et al. 2006; Pumain 2006) explain the stability of the distribution of city sizes and the
functional differentiation by formalizing exchange mechanisms of competition and
cooperation between cities that diffuse social, political and economic innovations in
a way that gives an advantage to large cities, thus explaining their fastest growth,
rank inertia and inner diversity on the long term.
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2. Size effects comprise the theories of agglomeration economies and disec-
onomies (for a review, cf. Rosenthal and Strange 2001). They explain the existence
of cities of different sizes by the different possible equilibria between centripetal and
centrifugal economic forces. Centripetal forces refer to matching, sharing, learning
and sorting advantages of large cities (Duranton and Puga 2004). Centrifugal forces
usually refer to congestion and pollution externalities of population agglomerations
(Krugman 1996b).

3. Site effects explain the location of cities, and the spatial distribution of growth
which is due to an easy access to some localized resources, may they be natural
deposits (oil, river, seaside, climate) or social amenities (patrimonial sites, creative
atmosphere). The causal mechanism translating this principle is very simple: cities
which are located near advantageous resources attractmore people and create specific
products at a lesser cost, and therefore tend to grow faster.

4. Situation effects such as the one used in location theories (Reynaud 1841;
Christaller 1933; Ullman 1941) explain the regular spacing of cities, their size and
specialization by looking at the relative accessibility in the system. For instance,
hub locations on transportation networks provide advantageous locations for urban
growth, as well as large cities because they provide a larger access to a larger pool
of products.

5. Territorial effectsfinally differentiate cities according to the political territories
they belong to and look at factors of common evolution enhanced by public policies
(fiscal redistribution for example) and shared habits (with respect to natality, for
example). It also explains the particular evolution of capital cities by their specific
function in the system (Preston 1979; Brockerhoff 1999; Bretagnolle and Pumain
2010).

Theoretically, there is a simple reason why we should try and combine different
theoretical (partial) explanations into a unique model: it is to evaluate the explaining
power of different hypotheses and of their combination on an empirical case study
(Martin 2015). By allowing different accounts to play in the same simulation, we
can compare and order different theories, we identify equifinality for the ones per-
forming equally, we spot areas or periods for which some theories work better than
others—thus characterizing the genericity and specificity of different hypotheses—
andfinallywebuild a composite theorymade of existing complementarymechanisms
(Thiele 2015).

4.2.2 A Methodology for Implementing Multi-models

Methodologically, there are examples of complexification of the models proposed
by agent-based modellers. The pioneers (Epstein and Axtell 1996) indeed proposed
a modelling framework of the Anasazis that started from a simple model and added
supplementarymechanisms of individual interactions (trade, reproduction, etc.). This
incremental approach has been applied later in geographical (Conte et al. 2012) and
ecological (Grimm and Railsback 2012) models. At earlier stages of the modelling
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process, we also have examples of organized reviews of the literature aimed at for-
malizing the pool of competing theories to account for the pattern to simulate, in
organization science (Contractor et al. 2000) and health studies (Auchincloss and
Roux 2008; Galster 2012).

However, we do not know of many attempts to combine model structures in the
same framework and thorough explorations of multiple model structures against
empirical data. Indeed, this is recurrent plea in the literature (cf. Batty and Torrens
2005) for which we provide a proposition. The only example we know of this kind
of approach is the pioneer one of S. Openshaw (1983; 1988). His ‘model-crunching’
method produced a way to select efficient model structures of spatial interactions.
However, his pool of alternatives was restricted to different mathematical forms of
relating spatial interactions to masses and distances between geographical zones,
and led to model structures that were not always meaningful and interpretable. We
propose a framework which builds on a consistent set of causal mechanisms drawn
from the theoretical literature on systems of cities and which will produce models
that we can interpret and use for understanding, explaining and predicting urban
systems dynamics.

An initial set of mechanisms is implemented in a programming language that
enables their combination (in our case, Scala). A model structure is a certain com-
bination of mechanisms, i.e. the core mechanisms plus additional activated mecha-
nisms. All models in the same family are initialized with the same empirical data and
are evaluated with the same measures. Those measures can refer to stylized facts to
reproduce (for example, a rank-size distribution of city populations) or to empirical
patterns (the actual growth of cities and their hierarchical differentiation).

4.2.3 Exploiting the Results of a Family of Models

To assess the characteristics (performance vs. data, equifinality property, genericity
or specificity degree) of themechanisms of our composite theory,we need to calibrate
all model structures with the same criteria—or objective function—(Sect. 4.2.3.1).
This requires to identify measures of what a good simulation is with respect to its
distance to the observed patterns and empirical data, but also to control for unrealistic
dynamics (Sect. 4.2.3.2). The differentmodel structures are then compared according
to this measure, and analyzed according to the values of parameters for which the
best simulation is obtained. The systematic combination of mechanisms allows to
estimate the explaining power of a single mechanism (everything else being equal),
this explaining power being measured as how much it reduces the distance to the
empirical pattern (Sect. 4.2.3.3).
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4.2.3.1 Quantitative Measures to Define a Good Simulation
at the Micro-Geographical Level

In order to compare simulated systems with empirical systems of cities with respect
to the spatial and hierarchical distribution of growth over time, we compute a mea-
sure which sums the distance between the simulated population and the observed
population for each city of the system. We sum this distance for each time steps
for which we can compare simulated populations with empirical ones (typically, a
census year):

δ =
∑
t

(∑
i

(log(Po,i,t) − log(Ps,i,t))
2

)
(4.1)

We use logarithms to compare the impact of relative differences in small cities
with differences in large cities, and use the power 2 to give a larger weight to large
discrepancies in the sumof distances. Finally,we normalize this index by t the number
of time steps for which we can compare simulated populations with empirical ones
and by n the number of cities simulated, in order to compare systems with different
sizes and simulations of different historical lengths.

Weassess the quality of a simulationby looking at howsmall δ is, considering it has
passed micro-behaviour validity tests. We control for unrealistic micro-geographical
dynamics by checking for each simulation that there is no city with nowealth and that
no city produces and consumes more during a step than the wealth it accumulated
over time (for more details, cf. Cottineau et al. 2015a). Taking these three criteria
into consideration during the calibration process filters the parameters space of a
given model structure, excluding portions which lead to unrealistic behaviours of the
model during simulation. The minimization of the distance δ (given the two boolean
controls) represents the objective function of the (multi-) calibration.

4.2.3.2 The Multicalibration Procedure

The different modules of the model were combined and calibrated using mixin
methods (Steyaert et al. 1993, Lucas and Steyaert 1994, Prehofer 1997) in the object-
oriented programming framework of the Scala language. These methods allow the
implementation of different alternatives for a single trait (in our case: a mechanism
of city interaction or growth) and the generation of a source code containing all the
possible combinations (and their dependencies in terms of parameters and variables).
To run one of the possible implementations of the model, one has to specify an index
referring to the corresponding combination, and a vector containing values for all the
possible parameters, even when the given mechanism combination does not make
use of some of them. Given this functional way of implementation, the multicali-
bration thus corresponds to the calibration procedure described in Chap. 3, with an
additional parameter corresponding to the model index: therefore the genome of a
model defined as a combination of mechanisms contains the vector of all parame-

http://dx.doi.org/10.1007/978-3-319-46497-8_3
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ter values and the index driving the composition of the model. Models are run on
the European Grid Infrastructure and evaluated with respect to the fitness function
described in Chap.3. The only difference with the single-model calibration is that
we want results for each possible value of the model index parameter. Therefore, the
elitism specification of the calibration algorithm has been transformed to keep the
best individuals of each subpopulation (models run with a specific index). The top
50 best performing sets of parameters were kept. The mutation specification of the
calibration algorithm has also been tuned to favour a fast convergence: the model
index has a 10% chance of mutation. This feature facilitates the exchange of efficient
solutions between the different model combinations.

Combining the baseline model with five additional mechanisms for two different
time periods (1959–1989 and 1989–2010) resulted in 64 different model implemen-
tations (64 values for the model index), approximately 72 million evaluations of
which were drawn the best 3200 parameter sets evaluated during the multicalibra-
tion (50 for each model instantiation). This database is the one we use to analyze the
family of models in the next section.

4.2.3.3 Analyzing the Calibrated Models of the Family

There are three types of analyses that can be drawn from the multicalibrated family
of models.

• First, we propose to interpret the overall performance of the different model
structures, by looking at the shortest distance to the observed pattern obtained for
each parsimonious model (the core model plus one additional mechanism). This
performance can also bemeasured as the average distance reduction reached by any
model that contains this mechanism compared to models which do not. It means
that mechanisms and the theories they formalize can be compared and ordered
according to these two criteria, for each spatio-temporal simulation and between
territories and time periods. For example, if site effects produce systematically
better simulations for a time period, but not in the next one, this process can be
said a good candidate for explaining the empirical urban dynamics in the first time
span, but another range of explanation might be more relevant to understand the
subsequent period.

• Second, for a given structure of model, we propose to interpret the meaning of
the calibrated values of parameters that give the best simulation. That way, we
gain an insight into the strength of different processes and can compare them in
different systems (in time or in space).

• Finally,wepropose to study the residuals, i.e. the cities that cannot bemodelled in a
satisfactorywaywith the given structure ofmodel. Themagnitude of deviation and
the location of those cities tell us about the singularity of their trajectories, that we
can try to explain further with by historical events or supplementary explanations.
This last analysis is of crucial importance for the geographer as it reveals the areas

http://dx.doi.org/10.1007/978-3-319-46497-8_3
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of the observed urban evolution that ‘resist modelling’ (Durand-Dastès 2001) and
that suggest the singularity of the realized trajectory of the system.

Aswewill see in the following sections, such residual trajectories are of particular
importance in the Soviet urbanization. However, some cities of this system can be
simulated with generic mechanisms and thus the modelling process helps us disen-
tangle the dynamics of cities that are common to other systems and the trajectories
of cities that one can only understand if one knows about the history of the Soviet
Union.

4.3 A Family of Models of (Post-) Soviet Cities: MARIUS

The application of our multi-modelling framework on the case of (post-) Soviet cities
relies on the Simpop principles for modelling cities (Bura et al. 1996; Sanders 2005;
Bretagnolle and Pumain 2010) and on a harmonized urban database of 1929 urban
agglomerations and their populations over the twentieth and twenty-first centuries
(Cottineau 2014a, b). As in the Simpopmodels, we consider cities as collective agents
and model time with 1-year steps. TheMARIUS contribution brings up a newway to
categorize mechanisms, to order them ex ante given their specificity to the case study
(Sect. 4.3.1), as well as a reusable open-sourcemodular implementation (Sect. 4.3.2).

4.3.1 Ordering Possible Causes of Evolution from the Most
Generic to the Most Specific

We reviewed five classes of explanation that could account for the regular features
of systems of cities in Sect. 4.2.1. They describe systems of cities in general. In the
study of a particular system of cities, we expect the realization of general processes
to take a particular twist, but we can also expect: 1/other processes to take place,
for example political and economic processes shaping the overall geography and
affecting cities and 2/the different theoretical processes to appear at different levels
of importance in the empirical mix. Indeed, the Soviet and post-Soviet cities exhibit
some of the general features of systems cities: a hierarchy of city sizes that follows
a power law, the increase of size inequality between cities over time, the spacing
of cities in the inhabited space, a specialization of functions and economic interac-
tions. However, we identified empirically the territorial immensity, the importance
of subsurface resources and the planned nature of some of the economic interactions
during the Soviet Union to be particular and singular features affecting the location
and growth rates of specific cities (compared to the generic structure predicted, cf.
Cottineau (2014b).With this particular knowledge inmind, we identified and ordered
the mechanisms that we think are at play in the evolution of Soviet and post-Soviet
cities. We also distinguished between mechanisms as to those which imply interac-
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Fig. 4.1 Ordering possible causes of urbanization in the (post-) Soviet case

tions between cities and those which include interactions between cities and their
environment. There might be several ways of implementing each of them, so we
organized our path of model particularization into three axes (Fig. 4.1).

Axis 1 comprises mechanisms of interurban interactions. The first of this kind,
that we think the most generic yet important to model cities in the post-Soviet space,
corresponds to the theory of spatial interactions. The second one refers to territor-
ial effects and consists in a fiscal redistribution between cities of the same political
region. Othermechanisms, more andmore specific to the system under study, include
the path dependency and lock-in of interactions’ networks, the economic specializa-
tion (and monopoles for example) and the planning policy.

We place on axis 2 the mechanisms that formalize rules of interactions between
city agents and their broader geographical environment, such as the specification of
spatial interactions by actual distances, site effects encompassed in the extraction of
localized resources (a general mechanism, yet of particular importance for under-
standing the contemporary economy and location of growth in Russia and Central
Asia). The imperial construction of the Soviet Union makes us consider that the
different demographic regions and their differentiated paces of urbanization played
a particular role of situation and territorial effects in the trajectories of Soviet and
post-Soviet cities. Situation effect mechanisms such as the accessibility by trans-
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portation networks might be of singular relevance to the huge territory of the Soviet
Union. Finally, the role of open and closed boundaries of the system appears very
singular to this case, but a strong amplifier of territorial effects during the Soviet
period, compared to other systems of cities.

The third axis of alternative implementations of the same conceptual processes
has been exploited here by allowing different mechanisms to represent spatial inter-
actions, with different levels of complexity.

4.3.2 Implementing Modular Mechanisms

The different implementations of mechanisms have been described in detail in
(Cottineau et al. 2015b). In this chapter, we will only outline the main features of the
mechanisms actually implemented and evaluated as part of the multicalibration.

4.3.2.1 Size Effects and Spatial Interactions: The Baseline Model

The baseline model includes basic features of cities: their population initialized at
the empirical starting point of the simulation, and a wealth estimated as a power
law of this population, with a parameter populationToWealth ranging from 1 (no
economic size effect) to 2 (larger cities are wealthier). In this baseline model, each
city produces and consumes as a power law function of its population at each time
steps, with two parameters sizeEffectOnSupply and sizeEffectOnDemand ranging
from1 (no productive/consumptive size effect) to 2 (larger cities are increasingly pro-
ductive/consumptive per capita) and a normalizing parameter economicMultiplier.
Each city then proceeds to an estimation of potential exchanges of value with other
cities based on their respective size and distance, following a gravity model of dis-
tance exponent distanceDecay ranging from0 (no distance effect) to 2 (the interaction
between cities decreases faster than proportionately with the distance between them).
It then shares its supply (/demand) between potential city clients (/city providers)
and updates its wealth by adding the amount produced during the current time step,
subtracting the total demand, adding unsatisfied demand and subtracting the unsold
supplies during the external exchange round. The conclusive operation of a simula-
tion step involves translating the wealth differential into a population gain (or loss),
using a power law of exponent wealthToPopulation between 0 and 2.

This simple baseline model has proved unsatisfactory by itself to model the
evolution of Soviet cities but other implementations of spatial interactions were
shown necessary and sufficient to do so (Cottineau et al. 2015b). Such implemen-
tations included a transactional bonus mechanism and a fixed cost of transaction
mechanism.
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4.3.2.2 Spatial Interactions: The Bonus Mechanism

The bonus mechanism models positive externalities1 of external exchanges of cities
(compared to internal production for internal consumption within a city). It simply
adds to the wealth update a term Bi, which is a positive function of the volume traded
by a city i to all its urban partners, and the number of cities with which it interacted
(relatively to the total number of cities n). When this mechanism is activated, it
creates an alternative implementation of the spatial interactions baseline model (cf.
axis 3 of Fig. 4.1).

4.3.2.3 Spatial Interactions and Situation Effects: The Fixed
Cost Mechanism

The fixed cost mechanism complements the spatial interactions baseline model by
including a condition on the realization of exchanges between cities after the compu-
tation of interaction potentials. The new rule states that this potential needs to exceed
a value fixedCost because each exchange generates transaction costs (Spulber 2007).
If the trading potential between two cities is under this value, because of their small
size and/or large distance, they will not interact. Otherwise, they will share their sup-
ply and demand over the remaining set of potential partners as in the baseline model.
During the wealth updating step, each city will subtract the value of fixedCost as
many times as the number of transactions it was involved in. When this mechanisms
is activated (and when it is activated along with the bonus mechanism), it creates an
alternative implementation of the spatial interactions baseline model (cf. axis 3 of
Fig. 4.1).

4.3.2.4 Site Effects: The Resource Mechanism

Site effects inMARIUS are understood as subsurface resources. Natural deposits are
long known to be favoured locations of growth (Reynaud 1841), but their abundance
in the Soviet area makes it a relevant choice for explaining the spatial distribution
of growth. Resources can be of two types: coal and hydrocarbons. The location of
deposits is initialized empirically from observed patterns, and cities with access to
each of these resources are given an extracting advantage that depends on their total
wealth (a proxy for the capital they can invest in extracting the resource locally). This
mechanism thus has two parameters: coalEffect translates the percentage of wealth
added at each time step for cities located on coal deposits (by comparison with cities
located elsewhere), and oilAndGasEffect translates the percentage of wealth added
at each time step for cities located on oil and gas deposits (by comparison with cities
located elsewhere). Both range from -1 (the site has negative externalities on cities’
wealth) to 1 (the site has positive externalities on cities’wealth), with 0 corresponding

1Accounting for knowledge spillovers for example.
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to the absence of site effects. This mechanism represents the first increment that we
think specific to the Soviet system with respect to the interactions between cities and
their environment (cf. axis 2 of Fig. 4.1).

4.3.2.5 Territorial Effects: The Redistribution Mechanism

Territorial effects are implemented in MARIUS as a redistribution of wealth within
regions and within countries. At the beginning of a simulation step, cities of the same
territory mutualize a share territorialTaxes (from 0 to 1) of their wealth. From this
amount, the capital city raises a share capitalShareOfTaxes (from 0 to 1) to sustain
its administrative duty. The remaining amount of money is redistributed to every city
according to its size (in population). The balance of this redistribution is included in
the update of wealth at the end of the simulation step. This mechanism represents
the first increment that we think specific to the Soviet system with respect to the
interactions between cities (cf. axis 1 of Fig. 4.1).

4.3.2.6 Territorial and Situation Effects: The Urban
Transition Mechanism

In this second increment relating to the interaction between cities and their environ-
ment, we formalize uneven opportunities of rural immigration for cities of different
regions bymodelling a logistic curve of the urbanization rate and locating each region
on this curve given its level of urbanization at the initial date of the simulation.2 At
each time step, the region moves from one unit on the relative urbanization time,
and reach a higher urbanization rate. The cities which belong to each region have
an extra growth of population due to rural migration that is a negative function of
the urbanization rate. This function is normalized by a parameter ruralMultiplier
which possibly ranges from 0 (no migration) to 1 (the population is doubled by rural
migrants).

All these increments are combined into 64model structures thatwe have calibrated
over two periods of time: the Soviet stable era (1959–1989) and the post-Soviet
transition (1989–2010).

4.4 Geographical Insights on (Post-) Soviet City Growth
from Multi-modelling

By looking at mechanisms’ performance, corresponding parameters and residual
trajectories, we hope to understand better the probable drivers of urbanization before

2The logistic curve was estimated on empirical urban and regional demographic data between 1959
and 2010 for 108 regions of the Former Soviet Union (cf. Cottineau 2014b).
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and after the crash of the USSR, and to compare the power of different theories in
this explanation. Simulations of the Soviet period correspond to models of 30 steps
from 1959 to 1989, with an initialization of 1145 cities at their empirical population
in 1959 and 3 census check-up dates (1970, 1979 and 1989) for the evaluation. In
other words, in Eq. (4.1), t = 3 and n = 1145. Simulations of the post-Soviet period
correspond to models of 21 steps from 1989 to 2010, with an initialization of 1822
cities at their empirical population in 1989 and 2 census check-up dates (2002 and
2010) for the evaluation. In other words, in Eq. (4.1), t = 2 and n = 1822.

All the results presented come from themulticalibration of the 64model structures,
evaluated with the open database DARIUS on post-Soviet agglomerations,3 after
400,000 generations of a generic algorithmwhich objective functionwas tominimize
the distance δ while meeting the microdynamics controls, using parallel computing
through OpenMOLE.4 These results can be explored and replicated within an online
application called VARIUS.5 The point of this section is more about the geographical
insights and knowledge that are gained through multi-modelling.

4.4.1 Mechanisms’ Performance

From the pool of 64 model structures calibrated for each time period, we first look at
the best performance achievable (the controls for realistic dynamics being met) and
the corresponding model structure for the given period. Between 1959 and 1989, this
best performingmodel corresponds to a complete model (all mechanisms are active),
minus the resource mechanism. The normalized distance to empirical data amounts
to 0.0123. Between 1989 and 2010, the best performing model corresponds to a
completemodel (all mechanisms are active), minus the bonusmechanism. It amounts
to a normalized distance to data of 0.0041. These results confirm the intuition that the
differentiated urbanization processmightmore probably be the consequence of a mix
of effects (or partial explanations)—site, situation, size, territory and interaction—
than the result of a singlemechanism.Thus,more completemodels simulate better the
trajectory of all cities in the system (they also have more degrees of freedom during
the calibration, some mechanisms balancing others). These first results also show
that the dynamics of post-Soviet cities are on average three times easier to model
than the trajectory of Soviet cities. Is this evidence of some ‘normalization’ of the
economic and political system or does it only attest the low population growth (and
even demographic shrinkage onmost of the post-Soviet territory) of the last 20 years?
We cannot say at this point. However, we can observe that the location of resources
and the way we modelled site effects do not help reproduce cities’ trajectories before
the transition (as the best model performs without this mechanism). This reinforces
the empirical impression of diversity of trajectories in neighbouring locations at this

3http://dx.doi.org/10.6084/m9.figshare.1108081.
4http://openmole.org/.
5http://shiny.parisgeo.cnrs.fr/VARIUS.

http://dx.doi.org/10.6084/m9.figshare.1108081
http://openmole.org/
http://shiny.parisgeo.cnrs.fr/VARIUS
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period Cottineau2014b. However, this mechanism of resource extraction seems to be
an important candidate for explaining trajectories during the next period. However,
bonified interactions between cities tend to increase simulated deviations from the
observed urban trajectories. We see two interpretations to this result: 1/ technically,
the bonus parameter permits to model larger demographic growth (cf. Sect. 4.3.2.2),
and is thus not required at a time of demographic shrinkage) and 2/ the absence
of spillover ‘bonuses’ from interurban exchange might mirror the new localism of
post-Soviet urban strategies, which are less prone to deal with distant, uncertain
and costly suppliers from within the Former Soviet Union, but also rely more on
the wealth from subsurface resources and/or international partners (Europe, China,
Middle East, etc.).

Another way to look at the performance of single mechanisms is to compare
model structures composed of the baselinemodel plus a single additionalmechanism.
For the first period, the best performing parsimonious such model structure involves
the Urban Transition mechanism. In this case, the normalized distance to empirical
δ amounts to 0.0142, which is just over the best performing complete model (δ =
0.0123), but in the same range of performance. For the post-Soviet period, the best
parsimonious model performs 25% worse (delta = 0.0052) than a more complete
model (delta = 0.0041), with the Resource mechanism only. This indicates a pos-
sible shift in the main drivers of differentiation of urban trajectories before and after
the transition. During the late Soviet Union, difference in rural migrant potentials
would be the most important criterion to distinguish fast growing cities from more
steady relative trajectories. Territorial and temporal lags in the urban transitionwould
have been the important determinants of the evolution of cities in the different parts
of the former empire. In the post-Soviet New Independent States, on the other hand,
the access to important resources such as oil and gas would explain much better the
contrasted destinies of population growth and economic dynamics of cities.

Overall, we then see on Fig. 4.2 that the alternative implementations of the spa-
tial interaction mechanism (Bonus and Fixed Cost, appearing as the Bonus_true
and Cost_true in the bars of the Fig. 4.2.) contribute significantly to the reduction
of the distance to observed trends, as well as the mechanisms complexifying the
environment with which cities interact: Resources and Urban Transition (although
differently for the two periods). The Redistributive mechanism is not significant (at
a threshold of 0.5% of statistical error) in this average reduction. Finally, everything
being equal with respect to the structure of the model, applying it to the latest period
gives much better simulations.

We cannot make further comments on the modelled dynamics that simulate
(post-) Soviet cities most satisfactorily without looking at the values of the para-
meters calibrated for a given model structure.

4.4.2 Parameter Values

To simplify the analysis, let us focus on the best performing models for each period,
with a mix of four additional mechanisms each. The study of their calibrated parame-
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Fig. 4.2 Estimating the contribution of each mechanism to a ‘good simulation’. Each bar plots the
coefficient estimated during a regression of the normalized distance delta to empirical delta. The
intercept gives the average delta for the baseline model during the period 1989–2010. The other
bars correspond to the specific contribution of each mechanism, or the average surplus of distance
for the period 1959–1989. The colour of the bar indicates if the coefficient estimated is significant
or not in the regression (pvalue < 0.005 in blue)

Fig. 4.3 Calibrated parameters of best performing model structures for two periods

ters (Fig. 4.3) reveals insightful variations of the effect of the different mechanisms
needed to simulate two sets of very different historical urban dynamics.

The higher value of the parameter populationToWealthExponent for the initializa-
tion of the second period (i.e. superlinear scaling ofwealthwith population compared
to the linear relation of the precedent period) indicates a higher economic inequality
between cities with respect to their size at the beginning the post-Soviet era, which
is necessary to simulate observed trajectories under the modelled assumptions.

Size effects on yearly production and consumption behaviours are almost insignif-
icant for the two periods (sizeEffects∼1). The exception relates to consumption dur-
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ing the SovietUnion,which appears superlinearwith population: large cities generate
a higher demand per capita during this period under the modelled assumptions.

The reducing effect of distance on potential interactions (distanceDecay) is low in
this huge country, compared to empirical estimations on France and the UK (Fother-
ingham 1981; Baccaïni and Pumain 1998) but doubles over time, from 0.14 to 0.31,
suggesting a decrease of large distance transactions under market conditions. This
hypothesis is strengthened by the disproportionate increase of the value of the fixed-
Cost parameter. As it represents the threshold under which potential interactions are
not profitable, it renders a picture of exchanges limited to large volumes between large
and neighbouring cities. This framework fits with the descriptions of metropoliza-
tion and localism within the New Independent States after the transition and under
globalization processes.

The resource effect which is significant in post-Soviet urbanization patterns is
due to oil and gas deposits, generating a surplus of growth equivalent to 4 points in
percentage to cities located there, every year between 1989 and 2010. By comparison,
coal cities benefit from twenty times less boosting effect, a consequence of the
obsolete economic cycle of this resource.

Redistribution is almost absent from the first period’s model (<1% of wealth is
taxed, transferred directly to the capital city) but constitutes an important factor of
equalization thereafter.

Finally, rural migration appears ten times less important to explain urban trajec-
tories in the second period.

4.4.3 Residual Trajectories

We end the analysis of the best performing models at each time period by looking
at the cities that resist modelling, i.e. the urban trajectories which the implemented
mechanisms do not succeed in simulating. In particular, we look at the global disper-

Fig. 4.4 Global dispersion of residuals for each period
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Fig. 4.5 Spatial distribution for maximum residuals for each period

sion of residuals (Fig. 4.4), their spatial distribution (Fig. 4.5) and singular trajectories
(Fig. 4.6).

The global dispersion of residuals indicate that the most recent period is best
simulated by the model, and that in general, the most striking outliers correspond
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Simulated Population

Simulated Population

Fig. 4.6 Cities that deviate most from their simulated trajectories

to cities which are much more populated ’in real life’ than what the model predicts.
In the model for 1959–1989 for example, such cities include Naberezhnye Chelny
or Volgodonsk, respectively, 16 and 5 times bigger than expected. These cities were
indeed flagship industrial projects of the Stalin era, in the automobile and power
industries.

On the other hand, negative residuals like Sovetabad or Zhanatas in the most
recent model correspond to cities which shrank or grew less than expected given
their locations, attributes and predicted interactions. In the post-Soviet Uzbekistan
or Kazakhstan, they can be cities deserted by Russian migrants after the crash of
the USSR. The models of urban interactions of the MARIUS family are thus not
designed to simulate such paths and historical events.

4.5 VARIUS: A Visual Aid to Model Composition
and Interpretation

The challenge of analyzing and communicating processes and results of geographical
modelling, especially in the context of multi-modelling, calls for effective methods
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of visual representation (Batty et al. 2011). Indeed, we want to describe the urban
evolution and to explore the adequacy of several simulation models to reproduce this
evolution. These aims imply handling large spatio-temporal quantitative datasets and
comparing their features with the realized trajectory of the empirical system of Soviet
and post-Soviet cities. Visual representations, such as graphics and maps, seem to
be the simplest and most powerful way to do so (Tufte 2001), and the ideal basis
for argumentation and geographical interpretation. Indeed, the visual representation
of models performance and the distribution of spatial residuals provide supplemen-
tary elements for face validation of the simulation models (Hermann 1967), beyond
quantitative measures used in the automated calibration process.

VARIUS (http://shiny.parisgeo.cnrs.fr/VARIUS/) provides a platform for interac-
tive exploration of models which complementsMARIUSmodel building, and allows
to share and open the exploration of simulated urban trajectories online. Indeed, any
user can run the combination of mechanisms and parameterization of their choices,
and visualize the resulting urban evolution. Opening the black box of model build-
ing is necessary for collective model validation and can be eased by the provision
of predesigned tools for exploration, besides the open-licencing of data, models and
codes6.

4.5.1 Building the Model Online

The first part of VARIUS application (‘What happened?/Census data’) consists in
a quick presentation of quantitative evidence about the system to simulate that will
help selecting themost relevant set of mechanisms to analyze. Basically, it represents
the content of the DARIUS database, and represents urban demographic structures
in time and space.

• The first interactive map shows the population of all cities in the Former Soviet
Union at the chosen date (left chooser, the right slider adjusting the size of circles,
Fig. 4.7). This interactive map therefore shows the spatial and hierarchical distri-
butions of cities in the post-Soviet space from the first Russian census in 1897 to
the last in 2010 censuses are like transversal photographs of urbanization taken
at irregular points in time. To study an evolution between these photographs, the
second map provides a more dynamic approach.

• The second interactive map proposes two choosers representing the starting (T)
and the stopping date (T + P) of a period P under investigation. It relies on the
computation of the average annual population growth rate g of cities i during
this period P (Eq.4.2). Average annual growth rates ease the interpretation and
comparison of growth and shrinkage trends across irregular periods (typically,
intercensus intervals). As a result, maps produced in this section reveal the spatial
and hierarchical distribution of growth (red) and shrinkage (blue).

6https://github.com/ClementineCttn/VARIUS.

http://shiny.parisgeo.cnrs.fr/VARIUS/
https://github.com/ClementineCttn/VARIUS
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Fig. 4.7 Exploration of the empirical data. Size of circles can be adjusted (top right slider) and the
year of census for which the data are displayed is selected via the top left menu

gi,T ,P =
(

p

√
Populationi,T+P

Populationi,T

)
∗ 100 (4.2)

• A third interactive map represents the spatial distribution of fixed categories of
cities (statuses, access to resources, locations). Seven attributes are available to
display: the status of national and regional capital, 342 mono-industry towns as
defined by the Russian Federation in 20137; the location in areas of coal and
hydrocarbon extraction; accessibility by rail and by air, and absolute east/west
location.

In the part ‘How to Simulate it’, VARIUS provides tools to analyze the modular
structure of the MARIUS family of models, and estimates the contribution of dif-
ferent mechanisms and their combination to the reduction of discrepancies between
observed and simulated urban trajectories. Two approaches are offered to this esti-
mation. First, a linear regression of the fitness measure performed on all calibrated
models allows the users to identify by themselves the type of model that they want
to run, activating or deactivating the mechanisms that they find interesting for their
performance (or underperformance). The second approach yields an optimal com-
bination of mechanisms for simulating the observed evolution in the FSU, given the
number of mechanisms to combine (if one seeks parcimony above all). The platform
then goes on to providing a parameterization board to run the model online.

7http://www.veb.ru/common/upload/files/veb/br/mono/list342.pdf.

http://www.veb.ru/common/upload/files/veb/br/mono/list342.pdf
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Fig. 4.8 Parameterization board for running any MARIUS model

4.5.2 Running the Model Online

The central part of the application gives access to the model itself, by making it
possible to run it online, given a particular set of mechanisms and parameters. The
mechanism structure and parameter values necessary to execute themodel are defined
in the tab ‘Run aMARIUSmodel’, and can be set automatically as a result of previous
calibration, or exploredmanually by the user. By choosing the option ‘Best calibrated
model’ (Fig. 4.8) in this tab, the user focuses on best performing models only, and
explores their performance according to time periods (before or after the dissolution
of the USSR) and different mechanisms’ combinations. If one does not focus on
precalibrated models but seeks to explore the effect of single parameters on the
model’s behaviour and simulated patterns, it is possible to run a ‘Customized model’
instead and to define manually its parametrization. With this option, the user can
choose a value for each parameter in the intervals considered realistic and interesting
(the ones used for the calibration process). For the baseline model, six parameters
need to be defined, whereas additional mechanisms include one or two parameters
each.

4.5.3 Analyzing Results Online or ‘How Close Are We?’

The analyzis of model simulations is proposed at three scales: the macro geographic
level of urban hierarchy, the micro level of cities, and a meso level of categories of
cities, based on their function or status.
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• At the macroscale, two visualizations help to explore the quality of a simulation of
city sizes. In the first one, cities are ordered by population and plotted against their
ranks in the system in a Zipf tradition. The simulated hierarchy of cities (described
by the slope of the curve and its deviation froma straight line) can be comparedwith
empirical observation of over time (in grey). Being able to reproduce this pattern
is a basic requirement for any model to achieve. It means that the distribution of
city sizes match the observed one at the last date, but also the evolution towards an
increasingunevenness over time.The second representationdisplays the dispersion
of residuals (as in Fig. 4.4), that is the distribution of simulation errors for each city
at the last step of simulation. A model with a perfect fit would be characterized
by a distribution of blue dots along the orange line, meaning that every city’s
simulated population equals its observed population. This limit case is not one we
hope to achieve with parsimonious models. However, models are considered good
enough if they exhibit a small and symmetrical dispersion around this line. This
representation helps spotting outlier cities that the model is not suited to simulate
(the dots significantly away from the identity line).

• Outliers are the object of representation of the next tab in the application, at the
micro level of cities. Indeed, the maps plotted here show cities whose simulated
trajectories deviate most from the empirical one. Using appropriate thresholds and
looking at the spatial distribution of these cities at the different points in time, the
user is given a glimpse of the spatial and hierarchical pattern of residuals. This
sometimes gives way to hypotheses (e.g. the growth of large cities is underesti-
mated by the simulation) that can be tested in the final section.

• At ameso level of groups of cities, this multiple regression aims to profile residuals
according to the attributes of cities. We consider this last section as the beginning
of a new reflection to complement the model with new mechanisms. The intuition
for these new mechanisms would come from the observation of a semi-general
feature non-included in the current modules but shared by a large group of cities
displaying the highest residuals.

This application is therefore a communication tool for the work done onMARIUS
as much as a basis for a work-in-progress regarding model building.

4.6 Conclusion

Because the family of models is designed as a modular framework and because
methods were developed to handle modular models in the evaluation processes, the
expansion of themodel via newmechanisms or its transfer to different urban contexts
is made easier and more straightforward, reducing the development cost to the new
mechanisms to implement only.

This is a great step forward in the conception of the family of simulation models
for several reasons.
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In terms of model design, the contribution of a component can be soundly con-
fronted to the others: the introduction of a new component in the family of models
leads to new explorations of models dynamics, producing measures that assess both
the performance of the new mechanism, but also the performance of the rest of the
mechanisms when they interact with it. Each mechanism addition thus reinforces the
confidence we have in the mechanisms of the model family, refining the conditions
under which they perform best, in an entirely tractable and comparable way.

Furthermore, exploring the models structures allows orienting the model design
either towards parsimony or specificity, which is a great support when it comes to
strengthening a composite theory where several stylized facts may interfere depend-
ing on the chosen level of granularity.

Finally, the fact that a family of models produces comparable and validated tra-
jectories (with respect to their mechanisms, parameterization, and the data against
which they are calibrated) would make prospective outcomes, such as territorial poli-
cies scenarii, more directly interpretable. This knowledge thus enables to develop
policies that are especially adapted to local situations.
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Chapter 5
Using Models to Explore Possible Futures
(Contingency and Complexity)

Guillaume Chérel, Clémentine Cottineau and Romain Reuillon

Such an approach accepts that history and geography could
always be ’otherwise’, i.e., that the present is by no means
guaranteed by the past; thus, to know a society and a geography
is to know how it could be different than it is.
Barney Warf, 1993

Abstract This chapter considers models of urban systems as virtual laboratories
to explore possible trajectories that a ‘real’ geographical system could have taken
instead of the evolution path that is observed historically. It therefore builds on the
concept of historical contingency, and regards simulation modelling as an opportu-
nity to explore historical contingency in silico. This approach is illustrated by an
experiment performed on a model of systems of cities applied to the urbanization
of the (Former) Soviet Union, MARIUS, using a new algorithm seeking to maxi-
mize diversity in a model’s outcomes. The discovery of possible trajectories of the
target system through the model provides insight into the singularity of the realized
trajectory, and can be used for prediction to define a range of possible outcomes
resulting from a simulation of the model, not based on predefined scenarios but on
the maximum diversity allowed by the model within reasonable parameter bounds.

Keywords Alternative · Trajectories ·Model · Outcomes · Phase space · Search ·
Patterns

Up until now, we have focussed on the processes of urbanization and hierarchization
leading to empirically observed patterns and trajectories (cf. Chaps. 2–4). In the last
chapter, multi-modelling was introduced as a way to try and disentangle the probable
causes of a particular urban evolution. Different combinations of mechanisms were
simulated and compared to empirical data about the Soviet Union, allowing us to
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Fig. 5.1 Equifinality in
Chaps. 4 and 5
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order and eventually discard theoretical candidates for the explanation of this urban
evolution (Fig. 5.1). However, urban systems are path-dependent Arthur 1994 rather
than ergodic, therefore it is necessary to test the sensitivity of our models to the
variations of parameter values and to look at the variety of configurations that can
be generated from the same structure of models. This chapter provides a proposition
to study this property of agent-based models with an empirical example. We rely
on the MARIUS model to present an algorithm of pattern searching that explores
the diversity of outcomes possibly generated by the model with different sets of
parameters. This search is not just a robustness test of simulation models, it gives
us insights into alternative trajectories of a given urban system following a given
set of rules. In other words, it helps us figure out what alternative pasts, presents
and futures the system could have, informing prediction given complexity Batty and
Torrens 2005.

5.1 Models as Artefacts of Historically Contingent
Complex Systems

Simulation models are designed so as to abstract ‘real’ systems, by simplifying some
of their dynamics, resulting in a operable scientific device: a virtual laboratory.Within
this virtual laboratory, experiments can be replicated - which is impossible with the
‘real system’ - and the knowledge thus produced is being made reproductible. Fur-
thermore, beyond a certain degree of complexity, heterogeneous entities, non-linear
interactions and stochasticity are likely to generate a huge variety of trajectories
from a unique initial state (Amblard 2003). Therefore, conducting simulation exper-
iments with a model allows to explore the diversity of its possible trajectories by
varying its initial conditions and parameterization, and consequently, when moving
back to the ‘real’ system, to grasp how the system could have behaved otherwise.
This is particularly interesting for geographical systems, such as systems of cities,
whose observable regularities result from both particular historical contingencies
and generic dynamics (Pumain 2003).

http://dx.doi.org/10.1007/978-3-319-46497-8_4
http://dx.doi.org/10.1007/978-3-319-46497-8_5
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The historical trajectory of a city is the result of a contingent mix of individual
events and political decisions, of local opportunities and constrains as well as trans-
actions with higher geographical scales (the region, the State, the world), of random
facts and unpredictable micro-decisions. If we go back to our case study of the Soviet
Union, the trajectories of Moscow and Saint Petersburg over the years illustrate the
multiple influence of individuals (Peter the Great’s choice to establish a new capital
city as a window towards Europe in the early 1700s for example), of collectives
(bolsheviks, the members of the nomenklatura, oligarchs), of regional, national and
international affairs, the importance of Saint Petersburg as a port city in a continental
empire, the centrality of Moscow in the transportation networks, etc. At the indi-
vidual level, it could even seem like nothing could be explained of their trajectory
without knowing the full content of their historical chain of events. However, it is
the contribution of social science - and urban geography in particular - to analyse
and compare trajectories so as to draw some patterns, to highlight regularities and to
generalize them into a theory of urban evolution.

A large amount of work in urban geography has revealed regularities in cities
growth and linked urban attributes to patterns of growth and decline, looking at
elements of absolute and relative location, economic specialization and systems’
dynamics. However, from the early work of spatial economists in the nineteenth
century to the most recent accounts from complexity science, these mechanistic
claims are always accompanied by an emphasis on individual perturbations and the
unpredictability of individual trajectories, unlike earlier positivist and deterministic
views of geography. The present study builds on this ground and acknowledges both
the fact that cities present regularities which allow to build mechanistic models of
their evolution, but also that the situation observed empirically is just one of many
other realizations of its initial potential (Warf 1993; Byrne 1998; Pumain 2003).What
other realizations could have happened alternatively? Besides one or two educated
guess, it is usually hard to tell from qualitative or analytical studies.

What this contribution from generative simulation adds to the acknowledgement
of historical contingency in urban trajectories is a method to try and draw a full
picture of the other possible outcomes, based on a set of common rules of urban evo-
lution. This picture helps understanding what the system could have become under
close initial conditions. It also provides a richer basis for predictive accounts. Model
simulations enable to ‘replaying history’ with slight changes in parameters or initial
conditions, and thus it allows to explore the diversity of a model’s outputs to qualita-
tively delineate different regimes in the simulated trajectories.We used theMARIUS
model and the set of rules described in Chap.4 to simulate urban evolutions. Then
we designed an algorithm to detect different patterns in the simulated trajectories
and to maximize their trajectories. The following sections present the algorithm, the
alternative trajectories of the system modelled at different periods and tries to trace
back the values of parameters that achieved different outcomes to inform our knowl-
edge of possible futures, pasts and presents of the former Soviet Union to help us
understand it better.

http://dx.doi.org/10.1007/978-3-319-46497-8_4
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5.2 A Method to Foster Diversity in a Model Outcomes

Fostering diversity in the outputs of amodel requires to define some adaptedmeasures
to distinguish between the trajectories, and to guide the exploration of the model
behaviours towards an increase of the diversity of the resulting trajectories with
respect to these measures. The Pattern Search Exploration (PSE) algorithm was
developed for this precise purpose, by adapting principles from Novelty Search in
genetic algorithm (Chérel et al. 2015).

5.2.1 The Pattern Space Exploration Algorithm: Principles
and Implementation

The PSE algorithm relies on the Popper falsifiabilty principle, considering amodel as
a general hypothesis on theway a systembehaves. From such a general hypothesis are
derived somemore concrete hypothesis realization: simulations, who may be seen as
associations of input (parameters, environment) and output values (results). Results
are then confronted to observational data (provided they are available), described
and interpreted in terms of patterns1, allowing the model user to distinguish between
simulations corroborating the data and simulations who contradict data. So as to
validating a model, one should as well ensure that a model is able to corroborate the
observed data, by producing the expected patterns as looking at simulation which
may falsify it. The information gained by discovering unexpected patterns is then
used in the iterative process of model refining. In this process, a model is designed,
the pattern space explored, unexpected patterns (in particular falsifiers) are used to
revise the model assumptions, exploration of the pattern space starts over and the
loop goes on until the model is sufficiently satisfying (Cottineau et al. 2015b).

Some of the patterns a model may produce are unexpected, even to the eye of
the modeller. An unexpected pattern can either be a falsifier of the model if it is
contradicted by empirical observation, or a prediction of the model if it is validated
by it. To search for the unexpected patterns in simulations results is to search for
both at the same time.

Looking for unexpected patterns in the output space is a different kind of parameter
space exploration than the one presented in Chap.3, as there is no fitness function to
guide the exploration: we do not know what we are looking for.

1A pattern denotes a description of a simulation run. For example a simulation of a spatially explicit
population dynamics model can be described in terms of population growth and spatial aggregation.
All distinct combinations of values for these two variables are as many distinct patterns (Chérel
et al., 2015).

http://dx.doi.org/10.1007/978-3-319-46497-8_3
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PSE algorithm addresses this issue by projecting simulation outputs in a specific
space - the pattern space- determined by modellers, and using Novelty Search to
guide the exploration of parameter space in relation to the parameter space. The goal
of the exploration is now to

5.2.2 Evolutionary Methods for Parameter Space Exploration

As in any parameter space exploration of computer-based models of complex sys-
tems, several difficulties arise: the high dimensionality of the parameter space, non-
linearity between inputs and outputs, and stochasticity. High dimensionality (tens
or hundreds of parameters) makes the parameter space prohibitively huge to try out
all possible parameter values (or a regular sampling in the case of real valued para-
meters). Non-linearity entails that interesting output values may correspond to very
small regions of the parameter space, making them difficult to look for. Stochasticity
makes it necessary to replicate the simulations. For models which take up to minutes
to run a simulation, a clever exploration method to reduce the number of simulations
is necessary.

Some methods try to tackle the problem of dimensionality of the parameter space
with a priori samplings, such as the well known Latin hypercube sampling or LHS.2

Others try to solve it in an adaptive way, by choosing on the base of previously
collected information (Gramacy et al. 2004; Castro et al. 2013). To summarize, these
methods solve the problemof the parameter space size by not exploring the parameter
space exhaustively, sometimes using heuristics based on the irrelevance of some areas
of the parameter space given their particular objectives.

We do not have any constraint about the parameter space. This transfers the
problem of dimensionality from the parameter space to the pattern space. While
it may be hard to reduce the number of free parameters of a model of complex
systems, modellers are free to choose what variables to measure on a simulation, i.e.
how many dimensions the pattern space has. Typically, a two- or three-dimensional
space has both the advantage of being tractable and easily visualized.

Evolutionary methods are well suited for this setting because they can perform
a search through the parameter space based on information gathered in the pattern
space by simulation, and do so without any a priori knowledge of the relationship
between the parameter space and the pattern space. Existing evolutionary calibration
methods are all based on a priori ideas of the patterns one would like to obtain. The
a priori target pattern can be based on data to reproduce an observed scenario. It can
also be designed to represent an expected behaviour and used to assess the models
ability to reproduce it (such as the V-shaped formation of flocks in Stonedahl and
Wilensky (2011). An objective -or fitness- function is designed in terms of a distance

2see examples of sampling methods and comparisons in Saltelli et al. (2008), Kleijnen et al. (2005).
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between amodel run and the target pattern, and evolutionarymethods are used to tune
the parameters to minimize it. Our problem is different in that, rather than targeting
a particular pattern, we want to find the various ones a model can produce.

5.2.3 Novelty Search

Novelty Search (Lehman and Stanley 2010; 2011) does not rely on an objective
function. It generates successive populations of solutions to a problembybreeding the
most novel individuals of the current population. The novelty of current individuals is
measuredwith respect to the current population and an archive of past individuals, and
reflects the novelty of patterns (not parameter values). Novelty Search continually
drives the exploration of the parameter space towards areas which produce novel
patterns.

Pattern Space Exploration adapts Novelty Search to the exploration of computer-
based models of complex systems. In standard Novelty Search (Lehman and Stanley
2011), the novelty measure is based on the average distance of an individual to its k
nearest neighbours in the pattern space. In PSE, novelty relies on a ’hit map’ counter.
The hit map is a discretization of the pattern space into regular cells, and the number
of individuals which belong to each cell are counted throughout the exploration. The
novelty measure of an individual is based on the inverse value of its corresponding
cell count. The less a cell has received individuals before, the more novel is an
individual standing on it. This variation offers several advantages for our purpose.

First, defining a distance measure in a multidimensional space is not a trivial task,
in particularwhen the different dimensions represent unrelated variables. The hitmap
approach alleviates this problem by suppressing the distance measure, and relying
instead on the discretization of the pattern spacewhich is done independently for each
dimension. Second, computing the k nearest neighbours is computationally costly,
and constitutes a serious bottleneck in an evolutionary algorithm because it cannot
be parallelized (while the individuals evaluations are independent and can be). The
only operations needed with the hit map are accessing or incrementing the counter at
a given cell, and those are done in constant time. Third, the hit map naturally offers
a measure of the exploration progress, the volume discovered in the pattern space,
approximated by counting the number of cells which counters are positive.

5.2.4 PSE Algorithm

As with all evolutionary algorithms, PSE generates new individuals through a com-
bination of genetic inheritance from parent individuals and mutation. PSE selects the
parents according to the rarity of their patterns compared to the pattern population
and to the previous generations.
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PSE features the common components of evolutionary algorithms:

• a population of individuals, each of which encodes a particular element of the
search space,

• a selection method to select individuals from which a new population will be
created,

• a crossover and mutation mechanisms to create a new individual from previously
selected ones,

• an elitism mechanism to filter all the individuals (newly created and the old pop-
ulation) to be kept and form the new population.

As the algorithm progresses, unwanted individuals are discarded and forgotten as
new ones are added to the population. An archive is used to store information about
past populations.

Algorithm 1General Scheme of an evolutionary algorithm as in Chérel et al. (2015)
Generate μ genotypes by sampling the genotypic space
Evaluate them
while stop condition not reached do
for i = 1 to λ , the number of population to create do
Select 2 individuals from the population (selection)
Create a new genotype by crossover from the 2 selected individuals’ genotypes (crossover)
Mutate the new genotype (mutation)
end for
Compute the offsprings phenotypes (evaluation)
Filter the individuals (parents and offsprings) according to their phenotypes (elitism)
end while

The algorithm starts by generating individuals with random genomes representing
parameter values.

For each individual, a simulation is run and the pattern it produces is measured
(evaluation), resulting in as many patterns as generated individuals. At the elitism
stage, individuals are filtered to keep only those that are significantly different from
one another with respect to their patterns. Pairs of individuals are selected based on
how rare their patterns are relatively to the current population and past ones (rarity
is PSEs equivalent of the novelty measure). Every element of the genome of each
pair is recombined to form a new genome, which is then further mutated. A new
generation of individuals is thus created, and the loop continues (Fig. 5.2). The main
idea is that by selecting parents whose patterns were rarely observed previously, we
increase the chances to find patterns yet undiscovered.

An individual is described by a genome and a phenotype. Its genome encodes
an element of the search space. The phenotype of the individual is computed given
its genotype through evaluation. The phenotype thus reflects the behaviour of the
individual. In PSE, a genotype encodes a value for each parameter. An evaluation
corresponds to a simulation run with the parameter values taken from the genome.
A phenotype encodes a pattern measured on the simulation output.
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Fig. 5.2 PSE principle

For sake of simplicity, we will consider that the genotypic and phenotypic spaces
are multidimensional real spaces, respectively, RK and RM , where K is the number
of distinct parameters of a model, and M is the number of descriptives variables used
to qualify a pattern, i.e. the dimension of the pattern space.

PSE tends to overcome other existing approaches such as Sobol, Latin hypercube
sampling or Grid sampling, in terms of coverage of the pattern space, see Chérel
et al. (2015) for details.

5.3 Application to Systems of Cities

Although this method is generic and applicable to any model from which one would
want to explore the pattern space, its application to the simulation of geographical
systems is of paramount interest to explore the possible futures at a point in time
as well as the alternative past and present patterns which could have occurred given
the same initial conditions and rules of interaction. It has been developed for the
MARIUS family of models described in Chap. 4. By applying the PSE exploration
method to this model, the range of its possible trajectories can be explored and the
resulting alternative situations can be discussed in the same terms as the trajectory of
the best performing parameterization of themodel (when calibrated against empirical
data).

PSE approach implies the identification of order parameters, that is the measures
which define the pattern space in which we look for diverse alternatives (Sect. 5.3.1)
to compare with the historical trajectory. We then compare the possible trajectories
identified with PSE to the calibrated one (Sect. 5.3.2).

http://dx.doi.org/10.1007/978-3-319-46497-8_4
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5.3.1 Order Parameters from Empirical Observation
of Urban Systems Evolution Over Time

Systems of cities are defined by their interactions within a coherent space (Cristelli
et al. 2012), usually a country or subcontinent. The system cities form and its evolu-
tion over decades of urbanization can be described by it size, its growth over time,
its spatial distribution and its hierarchical organization (Pumain 1997). Over short
time periods, the number and spatial configuration of cities are relatively stable. We
therefore focus on growth and the hierarchical distribution to characterize the state
of a system of cities at a given point in time.

5.3.1.1 Population Growth

Growth relates to the variation of population living in cities. Its variation is strongly
linked to overall processes of demographic and urban transition, and was observed
to be generally comprised between −1 and +5 percent of the existing population on
average per year, with a mean of 0 to 1 percent (Pumain et al. 2015). The growth
indicator which we use in this experiment is simply given by the absolute difference
between final and initial population of the system.

In order to distinguish monotonic population growth regimes frommore complex
ones, the number of sign inversion of the growth rate is also monitored during a
simulation.

5.3.1.2 Hierarchisation

The hierarchical distribution refers to the fact that cities are distributed very unevenly
according to their size, giving an heavy-tail distribution best described by a power
law (known as Zipf’s when the exponent value equals −1). The exponent of the
power law approximating the size distribution is an indicator of size inequality.

It varies empirically from−0.8 to−1.5 between countries with higher size equal-
ity and countries where the city size hierarchy is the strongest, using a consistent
definition of cities as built-up areas at the end of the twentieth century (Moriconi-
Ebrard 1993).

Combining growth and hierarchy into qualitative patterns, one expects four types
of outcomes of urbanization between two dates:

• hierarchisation in a growth context (e.g. Europe in the twentieth century)
• hierarchisation in a shrinkage context (e.g. Russia in the 2000s)
• equalization in a growth context (e.g. China in the 1960–1970s)
• equalization in a shrinkage context.

The complete pattern space explored with PSE was in fact three-dimensional:
(Growth, Hierarchisation, number of inversions), but our focus is on the
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Table 5.1 Parameter ranges for MARIUS 1, and calibrated values

Parameter Min Max Calibrated 1959–1989 Calibrated 1989–2010

economicMultiplier 0 100 0.343809442 0.1278786

sizeEffectOnSupply 1 2 1.0017563880 1.0000000

sizeEffectOnDemand 1 2 1.0792607803 1.0141498

wealthToPopulationExponent 0 2 0.3804356044 0.4023026

distanceDecay 0 10 0.6722631615 0.6434053

populationToWealthExponent 1 10 1.0866012754 1.0060258

bonusMultiplier 0 1000 197.9488907791 0.0000000

fixedCost 0 1000 0.2565248068 0.1266480

Table 5.2 Parameter ranges for MARIUS 2, and calibrated values

Parameter Min Max Calibrated 1959–1989 Calibrated 1989–2010

economicMultiplier 0 100 0.667886409 0.6081329

sizeEffectOnSupply 1 2 1.001053646 1.006575

sizeEffectOnDemand 1 2 1.006845651 1.000165

wealthToPopulationExponent 0 2 0.362268806 0.6451355

distanceDecay 0 10 0.000000000 0.2994255

populationToWealthExponent 1 10 1.038185914 1.036641

bonusMultiplier 0 1000 36.448303315 1.602549

fixedCost 0 1000 0.032413850 100

oilAndGazEffect −1 1 0.003653162 0.04216174

coalEffect −1 1 −0.011317100 0.0001835161

territorialTaxes 0 1 0.667721301 0.1006380

capitalShareOfTaxes 0 1 0.997001708 0.2347508

ruralMultiplier 0 1 0.018644683 0.0009140980

first two dimensions. The number of inversions completes the interpretation of the
overall growth values, by depicting alternating regimes of growth and shrinkage.

5.3.2 Parameter Space and Pattern Space

MARIUS models are combinations of generative mechanisms (cf. Chap.4). For the
purpose of this exploration, we explored the pattern space of two combinations of
them, for the two time periods of 1959–1989 and 1989–2010.

The first instantiated model is the most parsimonious combination which still pro-
duces a satisfactory reproduction of the Soviet urbanization (Cottineau et al. 2015a).
Let us call this structure of model MARIUS 1. It has two additional mechanisms
(bonified interactions and fixed costs) and eight free parameters in total, comprised
in the bounds given in Table5.1.

http://dx.doi.org/10.1007/978-3-319-46497-8_4
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Table 5.3 Parameter ranges for MARIUS 1, and calibrated values

Pattern descriptor Step Min Max Empirical
Value

Rank-Size slope 0.1 −10 0 [−0.8;1.2]

Population difference 5000 −0.83544∗108 5 ∗ 1010 [−107;+109]

Inversion count 1 −0 3 [0;2]

The step column gives the discretization step size. Min and max values give the theoretical bounds
for each observable. Artificial bounds (inside square brackets) were set on some parameters to
focus the exploration on regions of interest. Calibrated values are from Cottineau et al. (2015a),
reproducing the hierarchisation and growth of Soviet cities during the late 20th.

The second instantiatedmodel (MARIUS2) is the complete combination ofmech-
anisms with free parameters in total, comprised in the bounds given in Table5.2.

Pattern space is discretized according to Table5.3
Growth has been upper bounded artificially to 500 millions, the inversion count

was upper bounded to 3, and the rank–size slope (hierarchisation) was lower bounded
to −10. Simulation whose measures overcome these bounds are assumed to have a
value equal to the bound. Preliminary experiments not shown here revealed that
population growth can get far above 500 million, and hierarchisation can get far
below −10, and the number of inversions up to 28 (the maximum that can happen in
the 30 steps of the simulation).

PSE has been run for a total of approximately 36 million model evaluations,
distributed on 5000 computing units. One model evaluation takes about 40 s. The
whole run took 400, 000h in cumulative computation time and had been drastically
reduced to about one week, thanks to the OpenMOLE platform computation dis-
tribution method, the degree of parallelism of PSE method and the computational
capabilities of the EGI grid.

5.3.3 Results

Experiments reveal that PSE was more efficient than other methods to reveal distinct
patterns in the pattern space of MARIUS. Moreover, the first experiments revealed
the presence of extreme patterns which can be identified as falsifiers (Chérel et al.
2015) (cf. Fig. 5.3 left). Here we have linked patterns and parameters to try and
identify to restrict the pattern space to a significant one.

For a model structure including two additional mechanisms (Bonus and Fixed
Costs) between 1959 and 1989, we find that (cf. Fig. 5.4):

• the parameters in charge of the conversion rate between economic growth and
population growth (economicMultiplier,wealthToPopulationExponent and bonus-
Multiplier) need to be limited to 1 to prevent from extreme patterns of growth and
hierarchisation (bottom right line).



92 5 Using Models to Explore Possible Futures (Contingency and Complexity)

Fig. 5.3 New experiment with restricted parameter bounds and complete model. On the left large
bounds, MARIUS+ Bonus+ Fixed Costs+ 1959–1989. On the right restricted bounds, MARIUS
complete + 1959–1989

• similarly, when distance affects interactions too strongly (distanceDecay > 2),
we find patterns of growth and hierarchisation empirically unusual (bottom right
quadrant).

• parameters of wealth initialization and updating need to be capped from 1.5–1.6
to avoid extreme patterns of growth and equalization (top right quadrant).

• Large values of sizeEffectOnSupply (>1.6) and low values of bonusMultiplier
(<0.1) leed to extreme patterns of hierarchisationwith global population shrinkage
(bottom left quadrant).

With these new bounds (on the right) and a complete model of the same period,
we find a much restricted room for alternative pasts (cf. Fig. 5.3). We find that initial
conditions might not have allowed a fluctuated growth of population (no pattern for
2 inversions), and that an inversion of growth would necessarily have led to further
inequality of city sizes (no pattern with the complete model and 1 inversion lead to a
rank-size slope above the initial one). Finally, this period and parameterization lead to
growing patterns only. The real alternative revealed by this experiment is the process
of hierarchisation or equalization of city size associate with growth. Figure5.3 shows
that both patterns were accessible in 1959 given the modelled mechanisms, even
though hierarchisation was the path observed during the period.
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Fig. 5.4 Values of parameters for all patterns
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5.4 Conclusion: Acknowledging Historical Contingency
for the Prediction of Potential Urban Futures

Exploring pattern space shed light on unexpected patterns that deepen our under-
standing of the model general behaviour by revealing what it is able to produce
inside the whole parameter space and not only around the sole calibrated parameters
set. By looking at the corresponding parameterization that have led the model to
exhibit some unexpected patterns, we increase the model completeness and correc-
tion. Correction is increased by discovering falsifiers and others problematic cases,
who help to revise the model assumptions such as the range of possible values for
each parameter, or the unexpected interactions between a subset of particular para-
meters and mechanisms (e.g. the linear production and the superlinear consumption
of pattern G (cf. Fig. 5.3 left). Completeness of the model is increased by looking
at the plausible trajectories and the pattern to be found within and around the real-
ism span of the pattern space. Aside from clarifying the degree of contingency in
the system observed evolution, it also strengthens our belief that the mechanisms of
MARIUS are sound candidates to explain and reproduce systems of cities evolution
dynamics.

The reason for this is that with complex systems, we may have data about the
emerging patterns but not so much about the internal mechanisms, and this is the
case with city systems (it is easier to know the population size in time through cen-
suses than quantities related toMARIUSs parameters). The very purpose of complex
systems modelling is sometimes to capture internal mechanisms that are not directly
observable. In such case, it is easier to say if an observed global pattern is realistic
rather than if a parameter value is.

Prediction of complex system is tricky if not impossible (Batty and Torrens 2005).
At the very least, attempts at predicting futures should allow a span of possibilities
and take contingency of social events into account.

The kind of methods presented here should be of particular relevance to histor-
ical systems, which present a high degree of contingency, but these methods are
applicable to any other complex systems, and integrated in the OpenMOLE toolbox
(cf. Chap. 6).
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Chapter 6
An Innovative and Open Toolbox

6.1 Introduction

This chapter introduces the platform, OpenMOLE. It is a generic tool used to run the
different methods, which is presented in detail in the previous chapters. To simplify
the comprehension, we focus on a simple model, but which does not concern the city
modelling. However the principles are the same.

The modelling process can be seen as an iterative process, in which specific
knowledge is injected and series of issues has to be discussed. How does each input
participate in the production of outputs? Are all inputs necessary to generate all the
expected dynamics?What are the robustness intervals for the inputs?What are all the
possible dynamics of the model? Answering these questions helps in getting a better
understanding of the model under construction and a better idea of what my model
is? OpenMOLE has been thought to answer these questions. It exposes a workflow
formalism in which the model is the centre of attention. Numerical experiments can
be designed from simple parameter exploration to high level methods dealing with
calibration, sensitivity analysis, scenario reproduction.

This chapter presents the central concepts and theOpenMOLE formalismwith the
example of a simple but stochastic complex-systemmodel. In the first part, we explain
how to run a piece of program exposing this stochastic model with OpenMOLE, then
we show how to do replications on it, how to explore the input space of parameters
according to a Latin Hypercube Sampling (LHS). Finally, we expose three advanced
methods: The first one is an evolutionary process, which aims at finding an optimal
set of input parameters to simulate a given output (or reproducing a scenario). The
second one provideswith the validity of the input ranges in the context of the previous
scenario reproduction. The third one produces a map of output diversity.

This Ant model has been chosen to serve as a didactic example. It is simple to
explain its rules, yet it belongs to the category of complex systems. It is a real-
world model getting a minimal set of inputs and outputs, so that the OpenMOLE
methodology tools can be easily understood. However, in OpenMOLE, a model can

© Springer International Publishing AG 2017
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be viewed as a black box so that it is quite simple to transfer the following methods
to an other model.

This chapter does not explain how to instal OpenMOLE, how to launch and how
to handle the OpenMOLE application. The reason for this omission is that such
instructions are provided and updated on the OpenMOLE website.1

6.2 The Ant Model

Wepropose to study aNetlogomodel picked up from theNetlogo Library.2 However,
no skills in Netlogo programming are required. As embeddedmodels in OpenMOLE
are encapsulated and can be viewed as a black boxes, the following OpenMOLE
scripts can be used for any other language.

The Ant model was created by (Ury Wilensky 1997 and 1999) (Fig. 6.1). The
NetLogo’s website describes this model as follows: In this project, a colony of ants
forages for food. Though each ant follows a set of simple rules, the colony as a whole
acts in a sophisticated way. When an ant finds a piece of food, it carries the food
back to the nest, dropping a chemical as it moves. When other ants sniff the chemical,
they follow the chemical towards the food. As more ants carry food to the nest, they
reinforce the chemical trail.

Fig. 6.1 The Netlogo ants
model

1https://www.openmole.org/.
2http://ccl.northwestern.edu/netlogo/models/Ants.

https://www.openmole.org/
http://ccl.northwestern.edu/netlogo/models/Ants
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In this experiment, three food spots are set in the ants living area. The experiment
consists in testing the impact of the three model inputs on the time required by the
ants to consume the three food spots.

The tree inputs of the model are

• the number of ants,
• the evaporation rate of the chemical,
• the diffusion rate of the chemical.

We modified the source code so that we can obtain the food extinction time for
each spot

Listing 1 final-ticks-food1, 2, 3 represents the needed number of ticks, measured in simulation
steps or ticks (final-ticks-food) to consume the spots 1, 2, 3

to compute-fitness
if ((sum [food] of patches with [food-source-number = 1] = 0)

and (final-ticks-food1 = 0)) [
set final -ticks-food1 ticks ]

if ((sum [food] of patches with [food-source-number = 2] = 0)
and (final-ticks-food2 = 0)) [

set final -ticks-food2 ticks ]
if ((sum [food] of patches with [food-source-number = 3] = 0)

and (final-ticks-food3 = 0)) [
set final -ticks-food3 ticks ]

end

This model is stochastic. At each time step an ant, which is not sniffing the
chemical, can go in any direction randomly. As a consequence, we need to repeat a
given experiment (set with given input values) several times to ensure that any pattern
generated is robust. Therefore we need to initialize a Random Number Generator by
means of a seed value.

6.3 Embed the Model in OpenMOLE

The first operation is to run the Netlogo model on the OpenMOLE platform.
OpenMOLEcan run executions onHighPerformanceComputating environments.

It implies that we need to ensure that any code embedded by the platform can be
ported from one machine to another. This depends on the language with which the
model is coded. In the case of the Netlogo language, it is straightforward, since
Netlogo runs on the Java Virtual Machine, which has been designed to be portable.
Otherwise a packaging operation, based of the Care software3 would be necessary
to ensure that all the required libraries at runtime are embedded. We chose not to
expose this packaging operation here to focus on methods. However, this operation
is simple and well supported in OpenMOLE.

3http://reproducible.io/.

http://reproducible.io/
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An experiment is described in OpenMOLE as a workflow. A workflow is com-
posed of Tasks, which can be chained and ordered by means of another concept: the
Transitions. Let us introduce a couple of OpenMOLE concepts:

A Task is an atomic execution component, which can be run concurrently. They
tasks have been designed so that they have no interfering side effects. Therefore they
can be safely dispatched on several threads, processes or computers. A task can carry
a programm, which will be executed at runtime. It receives values (Val) as inputs
from the workflow and can produce other values (Val) as outputs.

A Val is a typed Value. It can represent a Double, an Integer, a String, a File (and
even Java defined class).

ATransition defines a precedence link between twoTasks. It is always run locally,
unlike the Tasks, which can be run on remote environments. It makes the Vals travel
from one Task to another.

We first design a very simple workflow containing only one Task (carrying the
Netlogo model). We also map the inputs and the outputs of the Netlogo model to
some Vals set as inputs and outputs of the Task. Thus we can assign values to the
Netlogo model inputs thanks to the mapped Val. In the general case, Task inputs
are set with the values of Vals arriving from the workflow by means of a Transition
(what we do later in the chapter). But, for now, we just build a very simple workflow
composed of one single Task, so that no Transition can feed the Task with any Val.
That is why, the input values of the Task are assigned manually.

So we first define seven Vals corresponding to four inputs: the population of ants,
the evaporation rate, the diffusion rate, the seed for the RNG as well as maxsteps,
which represents the maximum of steps in the Netlogo code. We also define three
outputs: the extinction time for the resource spots 1, 2 and 3.

Listing 2 4 Vals for the inputs and 3 Vals for the outputs

// Define the input variables
val population = Val[Double]
val diffusion = Val[Double]
val evaporation = Val[Double]
val seed = Val[Int]
val maxsteps = Val[Int]

// Define the output variables
val food1 = Val[Double]
val food2 = Val[Double]
val food3 = Val[Double]

We define a NetlogoTask, containing the nlogo source, the launching instructions,
the input/output mapping, as well as some manual initialization for the inputs.

Listing 3 Set of the task carrying the model

// Define the NetlogoTask
val cmds = Seq("random-seed ${seed}", "run-to-grid")
val ants =

NetLogo5Task(workDirectory / "ants.nlogo", cmds) set (
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name := "ants",
// Map the OpenMOLE variables to NetLogo variables
netLogoInputs += (population, "gpopulation"),
netLogoInputs += (diffusion, "gdiffusion-rate"),
netLogoInputs += (evaporation, "gevaporation-rate"),
netLogoInputs += (maxsteps, "gmax-steps"),
netLogoOutputs += ("final-ticks-food1", food1),
netLogoOutputs += ("final-ticks-food2", food2),
netLogoOutputs += ("final-ticks-food3", food3),
// The seed is used to control the initialisation of the

random number generator of NetLogo
inputs += seed,
outputs += (population, diffusion, evaporation, maxsteps),
// Define default values for inputs of the model
//seed := 42,
population := 125.0,
maxsteps := 2000

)

Our first workflow is almost ready! We are just not able to visualize the produced
outputs. Indeed, a Task has no side effect, so that it cannot display the value it
produces. A Task can be viewed as a portable function, which maps an input value
to an output value, nothing more. That is why, we introduce the following concept:

A Hook can be plugged on a Task to perform an action upon completion of the
task it is attached to. The action is done locally, once the Task execution is back
from an eventual remote host. There exists different kinds of Hooks, among which
the AppendToCsvHook to append a Val value at the end of a given CSV file or a
ToStringHook to display a Val value.

We need the latter to display the values of food1, food2 and food3. As these three
Vals are provided as outputs, plugging a ToStringHook on the Task that produces
them will result in their displaying when they are produced by the Task.

Listing 4 Hook plugging

//Define a workflow with one Task, hooked by the ToStringHook
ants hook ToStringHook()

With these final two lines, the workflow can be run and produces the following
output:

Listing 5 Hook displaying th waiting times for the extinction of the 3 food spots

{food1=746.0, food2=1000.0, food3=2109.0}
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6.4 Do Repetitions

An interesting thing is to replicate this stochastic model to get a mean value for the
outputs. To do so, we introduce a new kind of Task, a new kind of Transition and a
new concept.

A Sampling is a tool for exploring a space of parameters. The term parameter is
understood in a very broad acceptation in OpenMOLE. It may deal with numbers,
files, random streams, images, etc. There exists a lot of different ways to explore a
space of parameters. An exhaustive list of the available Samplings in openmole is
given on the https://www.openmole.org/ website.

An Exploration Task is a special Task, whose only setting is a Sampling. Its
only goal is to compute the Sampling it carries and to generate all the parameter sets
produced by the sampling. It is always followed by a special Transition:

An Exploration Transition links an ExplorationTask to another Task. It creates
one new execution stream by sample point in the Sampling of the ExplorationTask.
Exploration transitions are represented by the symbol − < (Fig. 6.2).

To carry out the replications on our model, we want to pick up n values from a
uniform distribution of integers. Let’s admit, we just need 10 repetitions. Then the
Exploration Task carrying this Sampling is defined by:

Listing 6 The definition of the Exploration Task and the new workflow statement

val replications =
ExplorationTask (
seed in UniformDistribution[Int]() take 10) set (
name := "Replicate ants",
(inputs, outputs) += (diffusion, evaporation),
diffusion := 10.0,
evaporation := 10.0

)

replications -< (ants hook ToStringHook())

Listing 7 Results for 10 repetitions

{food1=625.0, food2=1311.0, food3=1900.0}
{food1=546.0, food2=1109.0, food3=2574.0}
{food1=526.0, food2=1233.0, food3=2063.0}
{food1=790.0, food2=1214.0, food3=1901.0}
{food1=714.0, food2=1205.0, food3=2133.0}
{food1=534.0, food2=1067.0, food3=2035.0}
{food1=748.0, food2=1338.0, food3=2149.0}
{food1=908.0, food2=1148.0, food3=1821.0}
{food1=682.0, food2=1149.0, food3=1829.0}
{food1=905.0, food2=1315.0, food3=1771.0}

https://www.openmole.org/
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Fig. 6.2 10 different seeds
are generated and given as
input to 10 instances of the
ants Task. Each of them
provides food1, food2 and
food3

6.5 Automatic Workload Distribution

In the previous section, we generated 10 computation streams. They are independent
from one another since they do not require any information from another stream. So
that we can easily take advantage of the parallelism with OpenMOLE.

OpenMOLE allows the distribution of computation on servers, on clusters (PBS,
OAR, SGE, Slurm, Condor), or on the EGI grid. After having provided with your
login/password or your ssh private key or yourGrid certificate to the platformdepend-
ing on what technology you use (see the application documentation for the details
on https://www.openmole.org/), delegating the workload on these environments is
straightforward. All we need to do is to create the required environment and to specify
the Task you want to delegate on it.

Listing 8 Definition of a computational environment (PBS, local multi-core, EGI Grid, …) and
assignment to the ants Task, so that the latter will be deported on the previously defined environment
at runtime

val env = new PBSEnvironment("myLogin", "PBSmachineName")
// val env = LocalEnvironment(10) to take advantage of the

cores of your own personal emachine
// val env = EGIEnvironment("vo.complex-systems.eu") for

accessing the Grid VO vo.complex-systems.eu
// etc.

explore -< ants hook ToStringHook() on env

6.6 Expose the Variability of the Model

We can use the previous workflow to highlight the variability of the Ants model and
to well understand why it is so important to do repetitions on such stochastic models.
Let us set both diffusion and evaporation to 25.0. Then let us do 100,000 repetitions
to have an idea of the variability of the model response. The following graphs show

https://www.openmole.org/
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Fig. 6.3 Distribution for the spot food1 for diffusion = 25.0 and evaporation = 25.0

the required time to consume each food spot for the same input parameters (Figs. 6.3,
6.4 and 6.5).

6.7 Aggregate the Results

We now want to aggregate all the streams and compute a median value on them. To
do so, we need a new kind of Transition, which is the counterpart of the Exploration
one and merges all the streams generated by the Exploration into one array: the
Aggregation Transition (represented by> −). We then plug another Task onto this
transition to perform the median value from that array. For this, we use a Task called
a ScalaTask, which can execute some Scala4 code.

Listing 9 A Task for computing the median values

val medFood1 = Val[Double]
val medFood2 = Val[Double]
val medFood3 = Val[Double]

4http://www.scala-lang.org/.

http://www.scala-lang.org/
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Fig. 6.4 Distribution for the spot food2 for diffusion = 25.0 and evaporation = 25.0

val medians =
ScalaTask ("""
import math.abs

val medFood1 = food1.median
val medFood2 = food2.median
val medFood3 = food3.median""") set (
name := "medians",
inputs += (food1.array, food2.array, food3.array),
outputs += (medFood1, medFood2, medFood3)

)

The workflow becomes

Listing 10 A Task for computing the median values

replications -< ants >- (medians hook ToStringHook())

The resulting workflow can be represented by Fig. 6.6.
The output given by the Hook set on the median Task gives:

Listing 11 Median values for food1, food2 and food3 for 10 repetitions of ants

{avgFood1=649.5, avgFood2=1250.0, avgFood3=1979.0}
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Fig. 6.5 Distribution for the spot food3 for diffusion = 25.0 and evaporation = 25.0

Fig. 6.6 Values generated for food1, food2 and food3 by each of the 10 ants instances are merged
into 3 arrays ([food1], [food2] and [food3]) bymeans of anAggregationTransition and are processed
by the median Task, which provides median values for each array (avgFood1, avgFood2 and avg-
Food3)

6.8 Explore the Space of Parameters

We now explore the parameter space composed by the evaporation rate and the
diffusion rate values to test their individual and combined effects on the time for
consuming the food spots. We do not study the impact of the population size since
it seems clear that the bigger the population, the faster the food spots will be eaten.
The population is thus set arbitrarily to 125.0. To perform the sampling of parameter
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values, we use a Latin Hypercube Sampling5 of size 100. It means that a sampling
of 100 couples (diffusion, evaporation) is generated. We evaluate each couple 100
times, leading to 10,000 executions of the model. It implies some modifications in
the script.

First, we need to build a new ExplorationTask to carry out the LHS sampling.
This exploration will be executed before the replication one, so that we can calculate
a median value on 100 repetitions for each sample generated by the LHS.

Listing 12 ALHSsampling is carried out by aTaskExploration andbuild 100 couples (evaporation,
diffusion)

val sampling =
LHS(
500,
diffusion in (10.0, 100.0),
evaporation in (10.0, 100.0)

)

val exploration = ExplorationTask(sampling)

As shown in the Fig. 6.7, diffusion and evaporation are propagated in theworkflow
through the replicate Task and then directly to themedian Task. Indeed, we need these
values to be stored at the end of the workflow with medians of food extinction times.
This way, we can pair the outputs to the inputs used to generate them.

To do so, we add these two parameters as input and as output of the replicate
Task and we add a Transition between the replicate Task and the median Task (which
takes also these two parameters as inputs). At this point, we need to introduce two
new concepts.

The Capsule: carries a Task and several Slots.
ASlot is a synchronization point for all the Transitions arriving on it. It guarantees

that all the Transition transmissions are completed before starting the Task carried by
the Capsule. When a Task is created, a Capsule is automatically generated to carry
it. Sometimes, we need to create it manually to keep a reference on it.

In our case, we need to create theCapsule of the replicate Task in order to build two
Transitions: one to the ants Task and the other to the median Task. On the other hand,
we need to create manualy the Slot of the median Task to make a synchronization
point between the Transitions arriving from the ants Task and the replicate Task. The
Fig. 6.7 and the Listing 13 give an overview of this technical rearrangement.

Listing 13 The full script of the experiment

val seed = Val[Int]
val population = Val[Double]
val diffusion = Val[Double]
val evaporation = Val[Double]
val maxsteps = Val[Int]

// Define the output variables

5https://en.wikipedia.org/wiki/Latin_hypercube_sampling.

https://en.wikipedia.org/wiki/Latin_hypercube_sampling
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Fig. 6.7 An Exploration Task is designed to make vary diffusion and evaporation. It generates an
array of couples (diffusion, evaporation), which combines all different possible combinations of
the two variables. These values are transmitted to the replicate Task and then to the median Task,
so that they can be stored in a file thanks to the Hook set on the median Task

val food1 = Val[Double]
val food2 = Val[Double]
val food3 = Val[Double]

val medFood1 = Val[Double]
val medFood2 = Val[Double]
val medFood3 = Val[Double]

// Define the NetlogoTask
val cmds = Seq("random-seed ${seed}", "run-to-grid")
val ants =

NetLogo5Task(workDirectory / "ants.nlogo", cmds) set (
name := "ants",
// Map the OpenMOLE variables to NetLogo variables
netLogoInputs += (population, "gpopulation"),
netLogoInputs += (diffusion, "gdiffusion-rate"),
netLogoInputs += (evaporation, "gevaporation-rate"),
netLogoInputs += (maxsteps, "gmax-steps"),
netLogoOutputs += ("final-ticks-food1", food1),
netLogoOutputs += ("final-ticks-food2", food2),
netLogoOutputs += ("final-ticks-food3", food3),
// The seed is used to control the initialisation of the

random
number generator of NetLogo

inputs += seed,
outputs += (population, diffusion, evaporation, maxsteps),
// Define default values for inputs of the model
//seed := 42,
population := 125.0,
maxsteps := 2000

)

val replications =
ExplorationTask (
seed in UniformDistribution[Int]() take 100) set (
name := "Replicate ants",
inputs += (diffusion, evaporation),
outputs += (diffusion, evaporation),
diffusion := 10.0,
evaporation := 10.0

)
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val medians =
ScalaTask ("""
import math.abs

val medFood1 = food1.median
val medFood2 = food2.median
val medFood3 = food3.median""") set (
name := "medians",
inputs += (food1.array, food2.array, food3.array),
outputs += (medFood1, medFood2, medFood3)

)

val sampling =
LHS(

100,
diffusion in (10.0, 100.0),
evaporation in (10.0, 100.0)

)

val exploration = ExplorationTask(sampling)

val storeHook = AppendToCSVFileHook(workDirectory /
"result.csv")

exploration -< Strain(replications -< ants >- medians) hook
storeHook

The output of this experiment, stored in the result/result.csv file gives an explo-
ration of 100 different sets of parameters, each having been repeated 100 times.
Using this method, we can find the best input couple, which leads to the scenario
we aim at simulating. For instance, we may be interested in producing the following
real-world experiment: the spots 1, 2 and 3 are emptied in respectively 250, 400
and 800 seconds. So, we are looking for the lowest distance between the simulated
output and the expected output, which can for instance be expressed as the sum
| 250− avgFood1 | + | 400− avgFood2 | + | 800− avgFood3 |

The closest simulation to this target gives the minimal sum of 197. Of course the
best score is reached if the experiment reproduces exactly the real case (meaning a
sum of 0). The input values associated are presented in the following table:

diffusion evaporation Sum of differences
37.8 10.0 197.0

Well, we find one solution. 100 simulations (with 100 repetitions for each,
i.e. 10,000 runs) might seem like a large-scale experiment but a continuous two-
dimensional problemmay produce a lot of heterogeneity in the output space. Is there
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a better solution to this problem and to which extent is it better?What are the validity
intervals for the inputs?What does the output space of parameter look like? So many
questions we try to answer with evolutionary methods.

6.9 Optimization with Genetic Algorithms

In a genetic algorithm, an individual carries a genome, which is a set of genes
(values for each input parameters). Evaluating an individualmeans executing amodel
simulation with the parameter values in the genome and performing the desired
measures on the model output. The set of measured values constitutes what we will
call here a pattern. Each simulation thus generates a pattern. When the model is
stochastic, we can take the mean or median pattern of several simulation replications
with the same parameter values. In the end, an individual is composed of the genome
and the associated pattern.

Back to our ants optimization problem, the objective here is to find the closest
pattern to a experimentally measured pattern (value 250, 400 and 800 for avgFood1,
avgFood2, avgFood3 respectively). This problem is also called a calibration problem.
To do so, we use the multi-criteria optimization genetic algorithm NSGA2 available
in OpenMOLE and used for the calibration of SimpopLocal, cf. Chap.3. It takes the
following parameters as inputs:

• mu: the number of individuals to be randomly generated in order to initialize the
population,

• objectives: the objectives to minimise,
• genome: the sequence of model input parameters on which the optimization is
done, with the associated lower and upper bounds,

• replication: the repetition strategy

Listing 14 The NSGA2 settings in OpenMOLE

// Execute the workflow
// Define the population (10) and the number of generations

(100).
// Define the inputs and their respective variation bounds.
// Define the objectives to minimize.
// Assign 1 percent of the computing time to reevaluating
// parameter settings to eliminate over-evaluated individuals.
val nsga2 =
NSGA2(

mu = 50,
genome = Seq(

diffusion in (0.0, 99.0),
evaporation in (0.0, 99.0)),

objectives = Seq(deltaFood),
replication = Replication(seed = seed, aggregation =

Seq(median))
)

http://dx.doi.org/10.1007/978-3-319-46497-8_3
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The variable foodTimesDifference is a new Val, representing the sum of absolute
differences between the experimental time to reproduce and the simulated times.

We also need to cope with the distributed computation. OpenMOLE offers several
approaches to tackle this problem. Among them, we are here interested in the steady-
state approach. This algorithm begins with n individuals and launches a maximal
number of evaluations as long as there are available computing units. When an
evaluation is over, it is integrated in the population and a new individual is generated
and evaluated on the computing unit that has just been freed. This method uses all
computing units continuously and is recommended in a cluster environment.

Listing 15 Distribution in OpenMOLE with the steady approach

val evolution =
SteadyStateEvolution(

algorithm = nsga2,
evaluation = ants -- objective,
parallelism = 10,
termination = 100

)

We feed SteadyGA with the evolution method that was described above (nsga2)
and the piece of workflow to be evaluated (evaluation). The parallelism parameter
specifies how many evaluation are concurrently submitted to the execution environ-
ment and termination is the termination criterion; here it runs for 100 generations
(note that this parameter can also be set as a duration (10h for example)). SteadyGA
launches new evaluations as long as current evaluations are below this value.

SteadyGA returns two variables called in our example puzzle and ga. The second
contains information on the current evolution and allows to define hooks that save the
current population into csv file or to print the current generation. The following code
provides 2 Hooks to (i) save the population corresponding to each generation into a
file results/population#.csv, where # is replaced by the number of the generation and
(ii) to display in console the generation number:

// Define a hook to save the Pareto frontier
val savePopulationHook = SavePopulationHook(evolution,

workDirectory / "results")

When we launch this OpenMOLE workflow, the evolution will progressively
produce parameter values having the best fitness, i.e. for which the model is closest
to experimental values. We show the evolution of the distance between simulation
and experimental measures between successive evaluations in the following Fig. 6.8.

In this table is presented the best result at the end of 800 evaluations.
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Fig. 6.8 Evolution of the distance between the experimental values and the model. It converges in
less than 300 hundred evaluations

diffusion evaporation Sum of differences
71.17 5.61 15.5

This result is better than the one obtained with the LHS exploration method. The
sum of differences is more than 6 times lower in almost less than half the evaluation
time. It is also interesting to notice that the input value are in a completely differ-
ent regions of space: (71.17, 5.61) versus (13.27, 10.18). It demonstrates how the
Genetic Algorithm is faster and more efficient in this kind of optimization problem.
The difference between the two methods would be even greater in higher dimension-
ality problems.

6.10 Sensitivity Analysis with the Profiles Method

Themethodwe nowpresent focuses on the impact of the different parameters in order
to better understand how they contribute to themodel overall. In ourAnts example,we
calibrated the model to reproduce a set of notional experimental measurements. We
would like to knowwhether the model can reproduce this pattern for other parameter
values. It may be that the model cannot reproduce the experimental measurements
if a crucial parameter is set to a value other than the one found by the calibration
process. On the other hand, another parameter may prove not to be essential at all;
that is, the model may be able to reproduce the experimental measurements whatever
its value. To establish the relevance of our model parameters, we will investigate the
parameters’ profiles for the model and for the targeted pattern.
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We first establish the calibration of the evaporation parameter. Specifically, we
would like to knowwhether the model can reproduce the targeted pattern with differ-
ent evaporation rates. We divide the parameter interval into nX intervals of the same
size, and we apply a genetic algorithm to search for values for other the parameters
(the ants model only takes two parameters, so that the dispersal parameter is the
only one to be varied), which, as done previously in the calibration, minimise the
distance between the measurements produced by the model and the ones observed
experimentally. In the calibration case, we kept the best individuals of the population
whatever their parameter values. This time, we still keep the best individuals, but we
keep at least one individual for each interval division of the profiled parameter (in
this case, the evaporation parameter). Then, we repeat the process with the dispersal
parameter.

To set a profile for a given variable in OpenMOLE, the GenomeProfile evolu-
tionary method is used:

def profile(variable: Val[Double]) = {
val profile =
GenomeProfile (

x = variable,
nX = 100,
genome = Seq(

diffusion in (0.0, 99.0),
evaporation in (0.0, 99.0)),

objective = deltaFood,
replication = Replication(seed = seed)

)

// Calibration profile of 1000 points for the parameter
val evolution = SteadyStateEvolution(
algorithm = profile,
evaluation = ants -- objective,
termination = 20000

)

The arguments genome, termination, objective have the same role as the calibra-
tion workflow. The argument objective is in this instance not a sequence but a single
objective to minimise. The argument x specifies the index of the parameter to be
profiled, i.e. its position within the inputs sequence, indexing starting at 0. nX is the
size of the of the interval in the parameter range discretisation.
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When the diffusion rate is set to any value above 10, themodel is able to reproduce
experimental measures rather accurately. A refined profile within the interval [0; 20]
may be useful to give a more precise picture of the change in the influence of the
parameter.Model performance is on the contrary strongly sensitive to the evaporation
parameter, as values over 10 lead to a strong increase in minimal fit. When running
the model with a diffusion rate of 21 and evaporation rate of 15, we observe that the
ants are not able to build a sufficiently stable pheromone path between the nest and
furthest food pile, which increases the time needed to exploit it in a considerable
way.
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6.11 Validation, Testing Output Diversity

Knowing that a model can reproduce an observed phenomenon does not ensure its
validity. By validation, we mean that we can trust it to explain the phenomenon in
other experimental conditions and that its predictions are valid with other parameter
values. We have already established that one way to test a model is to search for
the variety of behaviours it can exhibit. The discovery of unexpected behaviours, if
they disagree with the experimental data or the direct observation of the system it
represents, provides us with the opportunity to revise the assumptions of the model
or to correct bugs in the code. This principle also holds for the absence of expected
pattern discovery, which reveals the inability of the model to produce such patterns.
As we test a model and as we revise it, we can move toward a model we can trust to
explain and predict a phenomenon.

One might wonder, for instance, if in our ant colony model the closest food
source is always exploited before the furthest. Accordingly, we decide to compare
the different patterns that the model generates, looking specifically at the amount of
time the model requires to drain the closest and the furthest food sources.

As in the previous experiment, we consider a task that runs 10 replications of
the model with the same given parameter values and that provides, as its output, the
median pattern described in two dimensions by the variables medFood1, the time in
which the closest food source was exhausted, and medFood3, the time in which the
furthest food source was exhausted.

To search for diversity, we use the PSE (Pattern Space Exploration) method
(Chérel et al. 2015). As with all evolutionary algorithms, PSE generates new indi-
viduals through a combination of genetic inheritance from parent individuals and
mutation. PSE (inspired by the novelty search method) selects the parents whose
patterns are rare compared to the rest of the population and to the previous genera-
tions. In order to evaluate the rarity of a pattern, PSE discretises the pattern space,
dividing this space into cells. Each time a simulation produces a pattern, a counter is
incremented in the corresponding cell. PSE preferentially selects the parents whose
associated cells have low counters. By selecting parents with rare patterns, we have
a better chance to produce new individuals with previously unobserved behaviours.

In order to use PSE in OpenMOLE, the calibration utilized in the previous section
is runwith a different evolutionmethod.Weused to provide the following parameters:

• genome: the model parameters with their minimum and maximum bounds,
• objectives: the objectivesmeasured for each simulation andwithinwhichwe search
for diversity,

• parallelism and termination have the same meaning as in the calibration example.

Here is the OpenMOLE code used for the PSE

val pse =
PSE(

genome = Seq(
diffusion in (0.0, 99.0),
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evaporation in (0.0, 99.0)),
objectives = Seq(

food1 in (0.0 to 4000.0 by 50.0),
food3 in (0.0 to 4000.0 by 50.0)),

replication = Replication(seed = seed)
)

val evolution =
SteadyStateEvolution(

algorithm = pse,s
evaluation = ants,
parallelism = 10,
termination = 1000000

)

As the exploration progresses, new patterns are discovered. The following figure
gives the number of known patterns (the number of cells with a counter value greater
than 0) with respect to the number of evaluations.

When this number stabilizes, PSE is no longer making new discoveries. One has
to be careful when interpreting this stabilization. The absence of new discoveries can
mean that all the patterns that the model can produce have been discovered, but it is
possible that other patterns exist but that PSE could not reach them.

The following figure shows the set of patterns discovered by PSE when we inter-
rupt the exploration after it stabilizes.

The first observation that can be made is that all patterns have indeed been discov-
ered: in every pattern, the closest food source has been drained before the furthest
one. Further, there seems to be minimum and maximum bounds on the time period
during which the nearest food source is consumed.

These observations give us starting points for further reflections on the collective
behaviour of the ants. For instance, is the exploration of the closest food source
systematic? Could there be ant species that explore further food sources first? If we
found such a species, we would have to wonder which mechanisms make it possible
and revise the model to take them into account. This illustrates how the discovery
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of the different behaviours the model is able to produce can lead us to formulate
new hypotheses of the system under study, to test them and to revise the model, thus
enhancing our understanding of the phenomenon.
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Knowledge Accelerator’ in Geography
and Social Sciences: Further and Faster,
but Also Deeper and Wider

Arnaud Banos

With the development and spread of complex systems theories, methods and tools,
large expectations rise. Justifying the positioning of the FuturICT European project
as a ‘knowledge accelerator’, Dirk Helbing for example “calls for a significant shift
in the research and educational focus of academic institutions. Specifically, one
needs to develop a better, holistic understanding of the global, strongly coupled
and interdependent, dynamically complex systems that humans have created. It is
required to push complexity science towards practical applicability, to invent a novel
data science, to create a new generation of socially interactive, adaptive ICT systems,
and to develop entirely new approaches for systemic risk assessment and integrated
risk management” (Helbing 2012).

Although one can hardly contest this statement in its general expression, two
precisions need to be highlighted. First, while building complexity science is indeed
a timely initiative, it would notmake sensewithout reinforcing in the samemovement
the ‘traditional’ disciplines it is connected to. Second, ‘accelerating’ knowledge will
not help much if this knowledge is not rooted in vivid theoretical, methodological
and empirical basis. Therefore, the idea of accelerating knowledge necessarily goes
with the idea of deepening and widening it. And in my opinion, this is one of the
striking characteristics of GeoDiverCity project, as revealed by the various chapters
constituting this book.

A New Fruitful Practice in Interdisciplinarity

First of all, let me stress a key issue: GeoDiverCity is a truly interdisciplinary project.
It is definitely not enough to bring together disciplines so that interdisciplinarity
emerges. Acculturation is a key factor of success and it involves time, much more
time than the current ‘project-driven research’ may provide. And it is definitely a
strength of GeoDiverCity to be rooted in the fertile ground of Géographie-cités’
historic legacy.

Moreover—and this will be my second point—this book proves that empowering
geographers and, beyond, researchers in human and social sciences, is possible: the
level of autonomy they can reach in the field of data processing and modelling has
never been so high. However, this does not mean that they become independent
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and can overcome the specialists in these very specialized, fast-evolving scientific
fields. Quite the contrary! Such empowerment repositions the interactions between
these communities and interdisciplinary working methods at a level that is much
more fruitful. Specialists in data and models on the one hand are no longer seen as
‘human–machine interfaces’ and experts from the social sciences, on the other hand,
are not anymore apprehended as suppliers or data entry problems and humanized aids
to the interpretation of model outputs. It is the entire interdisciplinary process that
evolves to richer interactions. Social sciences researchers have for now the capability
to build, analyze and experiment on their own methods and models.

By doing so, they expand their area of expertise with a renewed enthusiasm and
energy and can interact much more efficiently and with relevant experts in these
fields. These experts, in turn, earn more demanding colleagues, capable of posing
problems to a more advanced level and actually contributing to the construction of
methods, models and even tools needed for their resolution. This ‘co-construction’
is, for me, the spearhead of a vibrant and productive interdisciplinary research.

Modelling as a Necessary Experimental Method for Complex Social
Problems

In this context, the activity of modelling holds a very special place for me. First
because behind this term hides an incredible diversity of practices, partly irreducible
to one another, yet equally relevant and to a large extent complementary. Second, a
model can be a great mediator, even a catalyst of disciplinary and interdisciplinary
collaborations. Its genesis involves creating a shared ontology and therefore the
gradual creation of a common language.

Furthermore, the experimental ‘if-then’ approach a simulation model offers sin-
gularly broadens our space of possibilities and gives us new ways to question the
world in which we live. For these reasons, modelling can be seen as fundamentally
as a learning process. Indeed, being by definition iterative and interactive, modelling
implies repeated interactions between the model developed and the vision of the
phenomenon gradually built, from the preliminary conceptual model to its imple-
mentation and the systematic exploration of its behaviour in often multi-dimensional
and large parameter spaces.

This last point is of specific relevance in the context of this book, as several
chapters deal with this difficult issue. There is no alternative: the behaviour of each
model must be known accurately. However, a common criticism against the kind of
individual-based and path dependant models developed in GeoDiverCity concerns
precisely the difficulty we face when characterizing their behavior.

The parallel with system dynamics is often formulated. For such models, mathe-
matical tools exist and permit, in certain cases, to accurately characterize the behavior
of the set of coupled differential equations defined. This limitation is less and less true
today andwidening and opening access to adapted computing resources significantly
extend the range of possibilities for ‘less conventional’ models. Of course, parsimony
is still required as it is wise to minimize the number of parameters included in any
model, but more generally, today, the complexity of models can be adapted more
closely to the problems addressed by social sciences.
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Chapters3, 4 and 5 illustrate thismain output, and they all rely on the collaborative
platform OpenMOLE that allows defining and realizing the design of experiments,
sensitivity analysis, automatic calibration and pattern searching strategies needed.

New Tools for Model Validation and Reproducibility

These chapters also illustrate a major issue we face when modelling complex sys-
tems: it is indeed often impossible to offer unique and optimal solutions to complex
problems. Complex systems models are characterized by the existence of multiple
solutions, none of which are in general better than the others, if we stick to the only
principles that governed the construction of the model. The challenge is then to iden-
tify, by simulation, a set of solutions defined by an optimality criterium. Finding such
solutions is by no means a simple task, especially with the kind of multi-objective
approaches adopted within GeoDiverCity. One of the great outputs of this research
project resides for me in its definition and diffusion of methods and technologies
favouring the reproduction of such multi-objective explorations.

More generally, this book provides new evidences that reproducibility can and
should be a leading principle. While it is widely accepted that models are intended
to be replicated by others in order to be validated or refuted, this requirement is
not nearly as widespread as it should. The models developed or used in geography
and social sciences in general, rarely reach this reproducibility criteria. The reasons
are multiple and not necessarily negative: strong and personal commitment to the
models that have sometimes taken years to be developed; sake of keeping the keys to
some trade secrets developed long-term; desire to keep a step ahead of competitors
in a field of increasingly competitive activity; self-censorship-related sometimes to
approximate and non-optimal implementations by non-specialists.

Whatever the reasons, one should not forget the cumulative nature of knowl-
edge construction in science in general, and in the social sciences more specifically
(Pumain 2005). Sharing and diffusing models, methods and protocols is at least as
important as diffusing results and once again GeoDiverCity proves to be exemplary
in that perspective.

A New Incremental Multi-modelling Method

Coming back to the process of model building development, I would also like to
emphasize a few other qualities of the enormous amount of work achieved here.
First of all, as one can imagine by reading the various chapters of this book based
on models and methods of increasing complexity, developing a model is not at all a
simple or linear process.

There is even a form of path dependency and locking-in effect in this process: the
first choices often play a decisive role and once the basic foundations of the model
are built and progressive refinements are added, it becomes more and difficult to turn
back. The collective investment is therefore too often limited to a single model, not
necessarily the best one that could have been developed, and which, nevertheless,
continues to exist and be used in laboratories for years, even though common sense
would recommend that alternative models should be developed, all competing for
the best model position. GeoDiverCity once again goes a step further: the MARIUS
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framework proposed underpasses this strong limitation, based as it is on an original
incremental protocol.

Another characteristic of the modelling approach proposed is that is both theoret-
ically and empirically based, a combination not that easily reached. When you start
modelling, it is indeed easy and tempting to be confined to a relatively theoretical
level, by eliminating the many constraints of data. Funnily enough, it is also very
tempting and easy to stick to data. Theory driven approaches are frequently opposed
to data driven ones, although none of the two is able to claim its full independency.
GeoDiverCity does not fall in that trap and firmly anchors its models in both dimen-
sions: while they are intended to reproduce observed processes and structures and are
closely linked to them, their validation does not only rely on the direct comparison
of model outputs with observation data, a questionable approach when dealing with
path-dependant processes.

A Successful Tale for ERC Projects

All in all, this book sheds an optimistic light on the current state of public research
in France. When coupled with long-term investments in disciplinary and interdisci-
plinary works, short-term project research proves to be very efficient. In that sense,
the ERC project GeoDiverCity indeed played its accelerating role within its hosting
institution Géographie-cités. Would the two components have been dissociated, I am
not sure the results would have been that much convincing.

Moreover, the whole approach defined during those years and described within
this collective book paves the way towards more experimentally grounded social
sciences, even though the experimental framework we are talking about is merely
computational. I would not dare claiming after the Nobel Prize Herbert Simon that
“the social sciences are the real hard sciences” (cited in Squazzoni 2012), but I do
believe they belong to this family. Experimentation is therefore an important accel-
erator factor, provided our capacity to handle it in an adapted way. Dissociating and
isolating processes and structures is not an easy task and modelling and simulation
can help a lot.

Interdisciplinarity, in its richest and deeper acceptation, is the ‘voie royale’ in that
direction. Social scientists continue to receive little or no training in mathematics,
computer science and more generally in modelling. Dissemination and sharing are
therefore a responsibility of those who have the opportunity to acquire such skills.
Interestingly, the vectors of this diffusion cannot be reduced to formal languages.
First because such restriction is the best way to strengthen the structural asymmetry
social sciences experiment.

Second, because mathematics and generally formal languages are not necessarily
universal by essence. The mathematician Jean-François Colonna1 recalls “the diffi-
culty, if not impossibility for mathematics to construct naïve representations of the
objects under study”.

1http://www.lactamme.polytechnique.fr/Mosaic/descripteurs/AQuoiServentLesMathematiques.
01.html.
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Reinventing our methods, diversifying and adapting them to the problems, the
contexts and the peopleweworkwith, this is the key challengeGeoDiverCity engages
all of us to take up.
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